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Abstract A compact Riemann surface X is called a (p, n)-gonal surface if there exists a
group of automorphisms C of X (called a (p, n)-gonal group) of prime order p such that
the orbit space X/C has genus n. We derive some basic properties of (p, n)-gonal surfaces
considered as generalizations of hyperelliptic surfaces and also examine certain properties
which do not generalize. In particular, we find a condition which guarantees all (p, n)-gonal
groups are conjugate in the full automorphism group of a (p, n)-gonal surface, and we find an
upper bound for the size of the corresponding conjugacy class. Furthermore we give an upper
bound for the number of conjugacy classes of (p, n)-gonal groups of a (p, n)-gonal surface
in the general case. We finish by analyzing certain properties of quasiplatonic (p, n)-gonal
surfaces. An open problem and two conjectures are formulated in the paper.
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1 Introduction

A compact Riemann surface X is called (p, n)-gonal if there exists a cyclic group of auto-
morphisms C of X , called a (p, n)-gonal group, of prime order p, such that the orbit space
X/C has genus n. (p, n)-gonal surfaces and families of (p, n)-gonal surfaces have been the
focus of a number of different studies over the last half a century. (p, n)-gonal surfaces were
first considered in Kuribayashi [19], where it was shown that for a fixed genus g, the space of
(p, n)-gonal surfaces is a complex analytic submanifold of complex dimension 3n −3+r of
the Teichmüller space Tg of surfaces of genus g where r is the number of branch points of the
quotient map X → X/C . In the same paper, Kuribayashi also considered the corresponding
algebraic curves for (p, 0)-gonal surfaces, or what are currently referred to as p-gonal sur-
faces (by extension of “trigonal”), and their defining equations. Later, Cornalba in [9] used
a restricted version of (p, n)-gonality, where the branching indices of the quotient map are
specified, to completely describe the components of the singular loci in the moduli spaces
of Riemann surfaces. Other results focus on specific families of (p, n)-gonal surfaces such
as p-hyperelliptic surfaces which were introduced in [11] and coincide with the notion of
(2, p)-gonality, and elliptic-hyperelliptic surfaces, or (2, 1)-gonal surfaces.

If X is a compact Riemann surface and X admits any non-trivial automorphism, then X
will be (p, n)-gonal for some n and p. So describing the spaces of (p, n)-gonal surfaces is
equivalent to describing the singular loci in the moduli spaces of Riemann surfaces. This
observation provides the principal motivation for determining properties of (p, n)-gonal
surfaces.

The (2, 0)-gonal, or hyperelliptic surfaces have been analyzed in great detail over the last
century, with the most recent results classifying the different automorphism groups which
can act on such surfaces, see for example [4,6]. The (3, 0)-gonal, or cyclic trigonal surfaces,
were first considered in [1], with the classification of their automorphism groups and defining
equations provided in [2,7,10,35]. More generally, (p, 0)-gonal, or cyclic p-gonal surfaces,
were considered in [13], with complete classification results providing defining equations
and full groups of automorphisms appearing in [33,34]. (2, 1)-gonal, or elliptic-hyperelliptic
surfaces were considered in [31] and more recently in [5].

These prior studies of families of (p, n)-gonal surfaces have revealed many interesting,
and sometimes surprising properties of such surfaces or the groups acting conformally on
them. For example, any two (p, 0)-gonal groups of a surface X must be conjugate in the full
automorphism group of X , see [14], or [15], and in fact all p-gonal groups coincide if the
genus of X is large enough [8,26]. In [16] an upper bound is given for the number of such
groups. As another example, it was shown in [32] that a fixed surface X can be (p, 0)-gonal
for at most two distinct values of p, and all surfaces which satisfy this property were clas-
sified. One of our primary goals is to take previous results which hold for specific families,
and provide generalizations to all (p, n)-gonal surfaces for arbitrary p and n, or show that
no such generalization exists.

The so called quasiplatonic surfaces (see Sect. 2 for the formal definition) are of great
interest due to their close relation with maps and hypermaps on surfaces [18], the inverse
Galois problem [24], and the Grothendieck-Teichmüller theory of dessins d’enfants [25]. A
number of observations regarding quasiplatonic surfaces considered as (p, n)-gonal surfaces
appear in the literature. For example, it is shown in [31] that for all positive integers N , there
exists a genus g such that the number of quasiplatonic (2, 1)-gonal surfaces of genus g is
strictly larger than N . This is in stark contrast to the (2, 0)-gonal case where for generic g,
there are just three quasiplatonic (2, 0)-gonal surfaces of genus g, and also in contrast to
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the (p, n)-gonal case, n > 1, where for sufficiently large genus, there are no quasiplatonic
(p, n)-gonal surfaces (see Sect. 6).

We note that the concept of (p, n)-gonality holds for arbitrary positive p and n, but we
shall assume throughout that p is a prime. Unless the contrary is explicitly stated, we shall
also only consider surfaces of genus g ≥ 2. This is due to the fact that results regarding
gonality of surfaces of genus 0 and 1 are well known. The unique surface of genus 0 is
quasiplatonic and (p, 0)-gonal for all primes p. All surfaces of genus 1 are (2, 0)-gonal and
(p, 1)-gonal for all p. In addition, there is a unique (3, 0)-gonal surface of genus 1 and one
additional genus 1 surface which is (4, 0)-gonal (both of which are quasiplatonic).

2 Preliminaries

A co-compact Fuchsian group is a discrete group of orientation preserving isometries of the
upper half-plane H with compact orbit space. The orbit space inherits the complex structure
from H and hence is a compact Riemann surface. Let ! be a Fuchsian group. We define
the signature of ! to be (h; m1, . . . , mr ) where the orbit space H/! has genus h and the
quotient map π : H → H/! branches over r points with ramification indices m1, . . . , mr .
h is known as the orbit genus of !. When r = 0, we write (h;−) and ! is called a Fuchsian
surface group. When h = 0 and r = 3, ! is a hyperbolic triangle group. A Fuchsian group
! with signature (h; m1, . . . , mr ) has presentation

⟨α1,β1, . . . , αh,βh, γ1, . . . , γr : γ
m1
1 , . . . , γ mr

r , γ1 . . . γr [α1,β1] . . . [αh,βh]⟩.
The elements α1,β1, . . . , αh,βh are hyperbolic generators and the elements γ1, . . . , γr are
elliptic generators for !. Any element of finite order in ! is conjugate to a power of one of
the elliptic generators.

By the uniformization theorem, a compact Riemann surface X of genus g ≥ 2 is confor-
mally equivalent to the orbit space H/& of the hyperbolic plane with respect to the action of
a Fuchsian surface group & with signature (g;−) called a uniformizing group for X . Under
such a realization, a finite group G is a group of automorphisms of X if and only if G ∼= !/&

for some Fuchsian group ! containing & as a normal subgroup and so if and only if there
exists an epimorphism θ : ! → G with & as the (torsion-free) kernel. In such a situation,
the well known Riemann–Hurwitz formula holds:

|G| = µ(&)/µ(!),

where µ(!) is the hyperbolic area of a fundamental region which equals

2π

(

2h − 2 +
r∑

i=1

(
1 − 1

mi

))

(1)

for ! with signature (h; m1, . . . , mr ).
In the moduli space of genus g surfaces, the dimension of the locus of surfaces admitting

the action of the group G = !/& is equal to the Teichmüller dimension of ! which is
determined by its signature and is equal to 3h − 3 + r . Observe that when h = 0 and r = 3,
so ! is a triangle group, the dimension is 0 and the corresponding locus is a finite set of
points, corresponding to quasiplatonic surfaces.

Definition 2.1 A compact Riemann surface X is quasiplatonic if a uniformizing surface
group & for X is a normal subgroup of a triangle group [30].

We treat these surfaces in Sect. 6.
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4 Geom Dedicata (2010) 149:1–14

3 Elementary properties of ( p, n)-gonal surfaces

We start by gathering some basic facts about (p, n)-gonal surfaces.

Lemma 3.1 A compact Riemann surface X = H/& of genus g ≥ 2 where & is a torsion
free uniformizing group for X is a (p, n)-gonal surface for a prime p if and only if there
exists a Fuchsian group with signature (n; p, r. . ., p), where r = 2(g + p −1−np)/(p −1),
containing & as a normal subgroup of index p.

Proof Suppose X is (p, n)-gonal and let it be represented as the orbit space H/&. Let
C = ⟨ϕ⟩ denote a (p, n)-gonal group of X . Then, C = !/& for some Fuchsian group
!. By assumption, the orbit space H/! = X/C has genus n, so ! must have signature
(n; m1, . . . , mr ) for some m1, . . . , mr . Since & is torsion free, the corresponding generators
γ1, . . . , γr must preserve their orders in the quotient group !/& and therefore, since C has
prime order p, it follows that all elements γ1, . . . , γr must have order p. Therefore, ! has
signature (n; p, r. . ., p), where r can be found using the Riemann–Hurwitz formula.

Conversely, suppose there exists a Fuchsian group ! with signature (n; p, r. . ., p), where
r = 2(g + p − 1 − np)/(p − 1), containing & as a normal subgroup of index p. Then the
quotient group !/& acts conformally on the compact Riemann surface X = H/& which has
genus g by the Riemann–Hurwitz formula. By construction, X will be a (p, n)-gonal surface
with (p, n)-gonal group C = !/&. ⊓(

Theorem 3.2 An integer g ≥ 2 is a genus of a (p, n)-gonal Riemann surface X if and only
if

g = pn − p + r(p − 1)

2
+ 1,

where r ̸= 1 and r is even for p = 2.

Proof Suppose that X is a (p, n)-gonal surface of genus g ≥ 2 and let & denote a Fuch-
sian group such that the orbit space H/& is conformally equivalent to X . Then by the
previous lemma, there exists a Fuchsian group with signature (n; p, r. . ., p), where r =
2(g + p − 1 − np)/(p − 1), containing a Fuchsian group & with signature (g;−) as a nor-
mal subgroup of index p. Calculation of g is a straightforward application of the Riemann–
Hurwitz formula. Now suppose g = pn− p+[r(p−1)/2]+1 and let ! be a Fuchsian group
with signature (n; p, r. . ., p) for some r . If p ̸= 2 and r ̸= 1, we can define an epimorphism
θ : ! → C = ⟨a⟩ in the following way: we map all the hyperbolic generators, αi and βi
to a, and the elliptic generators γ1, . . . , γr to a, . . . , a, a2, a p−r , respectively, if r ≡ 1 (p)

and to a, . . . , a, a, a p−r+1, respectively, otherwise. If p = 2 and r is even then we can
define an epimorphism θ : ! → C = ⟨a⟩ mapping all the hyperbolic generators and elliptic
generators to a. Finally if r is odd and p = 2, no epimorphisms from a Fuchsian group with
signature (n; p, r. . ., p) onto C with torsion-free kernel exist since all elliptic elements have
to be sent onto a, while the product of all commutators of hyperbolic elements is mapped to
the identity of G. Similarly such epimorphisms do not exist for r = 1. ⊓(

If r = 0 in Theorem 3.2, the (p, n)-gonal group acts freely, i.e., without fixed points, and
the quotient map is a regular covering. It is often convenient to exclude this case, so we make
the following definition.

Definition 3.3 A (p, n)-gonal group acting on a surface X is called properly (p, n)-gonal if
it acts with fixed points, and improperly (p, n)-gonal otherwise. If there is no need to make
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the surface X explicit, we simply say that the group acts properly (or improperly). If there
is no need to make the group explicit, we call the surface itself properly (or improperly)
(p, n)-gonal.

If a (p, n)-gonal group C acts properly, then the number of fixed points of an element
of C can be determined using a formula due to Macbeath [21], a result which we will use
extensively in our calculations, see Lemma 5.1 for a complete statement of this result.

Let µ(p, n), µprop(p, n) denote the minimum genera ≥2 of a (p, n)-gonal, and a properly
(p, n)-gonal surface, respectively. As an immediate corollary of Theorem 3.2 we obtain the
following result providing the minimal genus for which there exists a (p, n)-gonal surface
and a properly (p, n)-gonal surface.

Corollary 3.4 With the above notations we have

µ(p, n) =

⎧
⎪⎪⎨

⎪⎪⎩

(p − 1)/2 if n = 0, p ≥ 5,

2 if n = 0, p = 2, 3
p if n = 1,

p(n − 1) + 1 if n > 1.

µprop(p, n) =

⎧
⎪⎪⎨

⎪⎪⎩

(p − 1)/2 if n = 0, p ≥ 5,

2 if n = 0, p = 2, 3
p if n = 1,

pn if n > 1.

Proof The Riemann–Hurwitz relation for a (p, n)-gonal action on a surface of genus g is

g − 1 = p(n − 1) + r(p − 1)

2
.

We require g − 1 > 1. If n > 1, g − 1 ≥ p(n − 1) > 1, with equality holding for improper
actions. For proper actions, r > 0 and hence, by Theorem 3.2, r ≥ 2. Taking r = 2 yields the
minimum (proper) genus. If n = 1, we must have r ≥ 2 so that g − 1 > 0, and taking r = 2
yields the minimum (proper) genus p. If n = 0, and p ≥ 5, we must take r ≥ 3 to make
g − 1 > 0. If n = 0 and p = 2 (resp. 3), we must take r ≥ 6 (resp. 4) to make g − 1 > 0.
Taking the minimum r in these cases yields the minimum (proper) genus.

4 Conjugacy classes of ( p, n)-gonal Groups

It was shown in [14] that for arbitrary genus g, there is a unique conjugacy class of (p, 0)-
gonal groups in the full automorphism group of a (p, 0)-gonal surface X . In this section we
shall derive a partial generalization of this result for arbitrary n. To do this, we shall need a
technical result due to Sah [23] and Maclachlan [22], which provides a relationship between
the signatures of a Fuchsian group ! and a normal subgroup & in terms of the index, the
orbit genera and the orders of the images of the elliptic generators of ! in the quotient group
!/&.

Lemma 4.1 Let ! be a Fuchsian group with signature (g; m1, . . . , mr ) and suppose & is
a normal subgroup of ! of finite index N, and let γ1, . . . , γr denote the elliptic generators
of !. If the image of γi in the quotient group !/& has order ti , then the orbit genus g′ of &

is given by

g′ − 1 = N (g − 1) + N
2

r∑

i=1

(
1 − 1

ti

)
, (2)
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6 Geom Dedicata (2010) 149:1–14

and the periods of & are fi j = mi/ti , 1 ≤ j ≤ N/ti , 1 ≤ i ≤ r , where fi j = 1 are
deleted. ⊓(

The following useful corollaries are immediate.

Corollary 4.2 Let ! be a Fuchsian group of orbit genus g containing a Fuchsian group
!′ of orbit genus g′ as a normal subgroup. Then g′ ≥ g and the inequality is strict for
g ≥ 2. ⊓(

Corollary 4.3 Let ! be a Fuchsian group of orbit genus 1 containing a Fuchsian group !′

of orbit genus 1 as a normal subgroup. Then all elliptic generators of ! belong to !′.

Proof Observe that, as Fuchsian groups, both groups must contain elliptic generators. Then
formula (2) gives

∑r
i=1

(
1 − 1/ti

)
= 0, hence the result. ⊓(

The following well-known lemma is a consequence of Corollary 3.4 (see also [17]).

Lemma 4.4 Suppose C is a cyclic group of a prime order p acting on a surface of genus
g ≥ 2. Then g ≥ (p − 1)/2.

Theorem 4.5 Let X be a (p, n)-gonal surface of genus g ≥ 2 with p > 2n + 1. Then all
(p, n)-gonal groups are conjugate in the full automorphism group G of X.

Proof The case n = 0 was proved in [14]. Henceforth assume that n ≥ 1.
Suppose that the full automorphism group G of X contains at least two conjugacy classes

of (p, n)-gonal groups. Applying the Sylow theorems, it follows that p2 divides the order
of G. Let P denote a Sylow subgroup of G and let C denote a (p, n)-gonal subgroup of P .
Note that since G contains more than one subgroup of order p, P cannot be cyclic and in
particular, it must contain more than one subgroup of order p. If C is central, let K denote
the elementary abelian group of order p2 generated by C and any element of order p not
belonging to C . If C is not central, let K denote the elementary abelian group of order p2

generated by C and any element of order p in the center of P . To finish the proof, we consider
separately two cases n > 1 and n = 1.

First suppose that n > 1. The group K/C acts on the surface X/C which by assumption
has genus n bigger than 1. In particular, there is an action of a cyclic group of prime order
p on a surface of genus n. By Lemma 4.4, n ≥ (p − 1)/2 which in turn gives 2n + 1 ≥ p,
contrary to our assumption.

Now suppose n = 1 and let & be a fixed uniformizing surface Fuchsian surface group for X ,
so X = H/&. Let !P and !C denote the Fuchsian groups with P = !P/& and C = !C/&.
The group !C has signature (1; p, r. . ., p) for some r . Since no proper subgroup of P is its
own normalizer (see, e.g. [27], 6.3.9), there exists a finite subnormal chain of subgroups
P = P0 ◃ P1 ◃ · · · ◃ Pm−1 ◃ Pm = C . Let !P = !0 ◃ !1 ◃ · · · ◃ !m−1 ◃ !m = !C
be the chain of corresponding Fuchsian groups, say with the orbit genera gi . By Corollary
4.2, gi ≤ gi+1 and so the genus of !P is 0 or 1.

In the first case there exists a pair K , K ′ of subgroups of P such that K ′ ▹ K , [K : K ′] =
p, and the corresponding Fuchsian groups ! and !′ have orbit genera 0 and 1, respectively.
Now, since all non-trivial elements of K/K ′ ∼= !/!′ have order p, we have by Lemma 4.1

0 = −p + p
2

t∑

i=1

(
1 − 1

p

)
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for some t . But the above is equivalent to

p = t
t − 2

which has integral solutions only if p = 2, 3, neither of which satisfy the bound p > 2n + 1
for n = 1, so this case is impossible.

In the second case all !i have genera 1 by Corollary 4.2 and so, by Corollary 4.3, all the
elliptic generators of !i are contained in !i+1 for i = 0, . . . , m − 1. We conclude that all
the elliptic generators of !P are contained in !C .

Now let C ′ be another subgroup of P of order p, not conjugate to C , and let !C ′ be
the corresponding Fuchsian group. Since !C ∩ !C ′ = &, !C ′ contains none of the elliptic
generators of !P . Thus !C ′ is a torsion free Fuchsian group, with orbit genus at least 2 since
the value (1) from Sect. 2 must be positive. It follows that C is the unique subgroup of P with
orbit genus 1. Since all Sylow p-subgroups are conjugate, there is just one conjugacy class
of (p, 1)-gonal groups in the full automorphism group of X , which completes the proof. ⊓(

Though our initial result holds for all n, if we add the condition n > 1, there are a number
of additional results we can derive.

Corollary 4.6 Suppose X is a (p, n)-gonal surface with n > 1 and full automorphism group
G. If p > 2n + 1, then p2 does not divide the order of G.

Proof If p2 divides the order of G, then there is a Sylow subgroup P of G of order pk for
some k ≥ 2. As in the proof of Theorem 4.5, it is easy to see that there exists some subgroup
K of P of order p2 which contains a (p, n)-gonal subgroup C . It follows that the group
K/C is a group of order p acting on a surface of genus n bigger than 1 and so we must have
p ≤ 2n + 1. ⊓(

Remark 4.7 If we allow n = 0, 1, Corollary 4.6 is false. Indeed, one can easily construct
surfaces which are both (p2, n)- and (p, n)-gonal for n = 0, 1. For example if K denotes
an elementary abelian group of order p2, there is a K action with signature (0; p, p2, p2)

which restricts to a C action with signature (0; p, p+2. . . , p). Similarly, there is a K action with
signature (1; p, p) which restricts to a C action with signature (1; p, 2p. . ., p). ⊓(

The classical theorem of Castelnuovo-Severi [8,26] implies that a (p, n)-gonal group
acting on a surface of genus g > 2pn + (p − 1)2 is unique and hence normal in the full
automorphism group. (Due to its complexity, we do not state the classical version of the
Castelnuovo-Severi here, and instead refer the reader to [3] for a modern exposition of the
Castelnuovo-Severi theorem. For a related fact about arbitrary p-subgroups of the full auto-
morphism group of a surface, see [20]). This motivates the following definition.

Definition 4.8 A (p, n)-gonal surface of genus g ≥ 2 is called strongly (p, n)-gonal if
g > 2pn + (p − 1)2.

Our results combined with the Castelnuovo-Severi theorem allow (an inductive) classifi-
cation of automorphism groups of strongly (p, n)-gonal surfaces of sufficiently high genus.

Corollary 4.9 Suppose X is a strongly (p, n)-gonal surface with full automorphism group
G and n > 1. If p > 2n + 1, then G is isomorphic to the semi-direct product C ! A, where
C is the normal (p, n)-gonal group, A is a group of automorphisms acting on a surface of
genus n, and p does not divide the order of A.
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8 Geom Dedicata (2010) 149:1–14

Proof By the Castelnuovo-Severi inequality, the (p, n)-gonal group C is normal in G. Now
G/C acts on a surface of genus n and by Corollary 4.6, p2 does not divide the order of G.
It follows that G satisfies the short exact sequence

1 → C → G → A → 1

where A acts on a surface of genus n. By the Schur–Zassenhaus theorem (see e.g. [27],
Theorem 9.3.6) the sequence splits over C and hence G ∼= C ! A. ⊓(

Theorem 4.5 shows there is a unique conjugacy class of (p, n)-gonal groups in the full
automorphism group when p > 2n + 1. In contrast, the next theorem shows it is possi-
ble to construct a (p, n)-gonal surface with n > 1 for which the number of non-conjugate
(p, n)-gonal groups is equal to k for any preassigned positive integer k ≥ 2.

Theorem 4.10 For any fixed prime p and any k ≥ 2, there exists a (p, n)-gonal surface,
for some n > 1, whose full automorphism group contains exactly k non-conjugate properly
(p, n)-gonal groups.

Proof Let ! be a Fuchsian group with signature (0; p, 4k. . ., p), k ≥ 2, and let γ1, . . . , γ4k
denote a set of elliptic generators for !. Let P denote an elementary abelian group of order
pk with generators a1, . . . , ak . We now show that there exists a Fuchsian surface group &

with genus g > 1 such that P = !/&. We do this by defining an epimorphism θ : ! → P
with torsion free kernel. For 0 ≤ i < k, 0 ≤ j < 4, we define θ as follows:

θ : γ1+4i+ j .→
{

ai+1 j = 0, 1
a−1

i+1 j = 2, 3
.

Using the Riemann–Hurwitz formula, it follows that P acts on a surface X of genus

g = 2kpk−1(p − 1) − pk + 1.

Moreover, since k ≥ 2, ! can always be chosen as a finitely maximal group (see [29]), from
which it follows that P acts as the full automorphism group of some surface X . We shall
now analyze this action.

Using Lemma 4.1, since ! has signature (0; p, 4k. . ., p), all elliptic generators of ! have
order p, so if & is any normal subgroup of index N in !, then for its orbit genus g′ we have:

g′ = Ns
p − 1

p
− N + 1 (3)

where s denotes the number of elliptic generators of ! with non-trivial image under the
quotient map π : ! → !/&. We can use Eq. (3) to determine the genus n of each surface
X/C for each subgroup C of P of order p. For every C , we have N = pk−1. For C = ⟨ai ⟩,
i = 1, 2, . . . , r , we have s = 4k − 4 and so X/C has genus

n = 4pk−2(p − 1)(k − 1) − pk−1 + 1 > 1.

The Riemann–Hurwitz relation for C acting on X with the quotient of genus n, shows
that C acts with 4pk−1(k − 1) ≥ 2p fixed points, so these C actions are proper. Moreover,
the groups are non-conjugate, since P is abelian. For any other C we have s = 4k and thus
the genus of X/C is different from n. It follows that P has exactly k nonconjugate proper
(p, n)-gonal subgroups. ⊓(
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Theorem 4.10 shows that if we are prepared to accept a large genus, we can specify as
many non-conjugate (p, n)-gonal groups as desired. However, not surprisingly, if the genus
is fixed, there is a bound on the number of nonconjugate properly (p, n)-gonal groups in the
full automorphism group of a (p, n)-gonal surface of genus g.

Theorem 4.11 The number of conjugacy classes of properly (p, n)-gonal groups of a
Riemann surface of genus g ≥ 2 is bounded above by

2p − 1 +
√

(2p − 1)2 + 8gp
2(p − 1)

Proof Let s be the number of conjugacy classes of proper (p, n)-gonal groups of a Riemann
surface X = H/& of genus g, with full automorphism group G = !/&. Since G has s
nonconjugate subgroups of order p acting with fixed points, ! has at least s periods which
are multiples of p, and so µ(!) ≥ 2π(−2 + s(p − 1)/p). Since g ≥ 2, ! is a Fuchsian
group with µ(!) > 0. Now, as distinct subgroups of order p intersect trivially, we have
|G| ≥ s(p − 1) + 1. So by the Riemann–Hurwitz formula we have

s(p − 1) + 1 ≤ |G| = µ(&)

µ(!)
≤ 4π(g − 1)

2π(−2 + s(p − 1)/p)
.

This leads to a quadratic inequality in s. The upper bound on s is the positive root of the
corresponding quadratic equation. ⊓(

Problem 4.12 The bound in Theorem 4.11 is rather generous for n = 0 and the absence
of n suggests it may be generous in general. It would be interesting to determine a bound
involving n which is attained for infinitely many triples (g, p, n).

5 On the number of conjugate ( p, n)-gonal groups

Under the conditions of Theorem 4.5 there is a unique conjugacy class of (p, n)-gonal groups.
Here we shall give a bound on the number of such conjugate groups under these conditions.
Bounds for n = 0 have been found in [16] and can be also derived from the classification
given in [34]. So we we shall assume n ≥ 1 and p > 2n + 1. We shall use the approach from
[16], where the principal tool was the following lemma due to Macbeath [21] on the number
of fixed points of an automorphism ϕ of X in terms of a group G of automorphisms of X
with ϕ ∈ G and the ramification data of the G-action.

Lemma 5.1 Let X = H/& be a Riemann surface with automorphism group G = !/& and
let γ1, . . . , γr be a set of elliptic canonical generators of ! whose periods are m1, . . . , mr ,
respectively. Let θ : ! → G be the canonical projection. Then the number F( f ) of points of
X fixed by f ∈ G is given by the formula

F( f ) = |NG(⟨ f ⟩)|
∑ 1

mi
,

where N denotes the normalizer and the sum is taken over those i for which f is conjugate
to a power of θ(γi ). ⊓(
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Theorem 5.2 The maximum number of conjugate properly (p, n)-gonal groups, p > 2n+1,
n ≥ 1, of the full automorphism group of a properly (p, n)-gonal surface of genus g ≥ 2 is

28(g − 1)

(g + 2 − 3n)
if p = 3,

16(g − 1)

(g + 4 − 5n)
if p = 5,

6(g − 1)(p − 1)

(g + p − 1 − np)(p − 6)
if p ≥ 7.

(4)

Proof Let X be a proper (p, n)-gonal Riemann surface of genus g ≥ 2, with p > 2n + 1,
n > 1. Let ⟨ϕ⟩ be a (p, n)-gonal group of X . Let X = H/& and A = !/& denote the
full automorphism group of X for Fuchsian groups & and ! with signatures (g;−) and
(h; m1, . . . , mr ), respectively. Let N be the order of A and let M be the number of (p, n)-
gonal subgroups of A. By Theorem 4.5, all of them are conjugate, so M = [A : NA(⟨ϕ⟩)]
and thus by Lemma 5.1, every period of ! produces at most N/pM fixed points of ϕ. Thus,
using the Riemann–Hurwitz relation for the (p, n)-gonal group ⟨ϕ⟩ acting on a surface of
genus g we get

F(ϕ) = 2(g + p − 1 − np)

p − 1
≤ s N

pM
(5)

fixed points, where s is the number of periods which are multiples of p.
The Riemann–Hurwitz relation for A acting on a surface of genus g is 4π(g − 1) =

Nµ(!) = s Nµ(!)/s. By (5), s N ≥ pM · F(ϕ). It follows that

M ≤ (g − 1)(p − 1)

p(g + p − 1 − np)
· 2πs
µ(!)

. (6)

The maximum value of M is obtained by minimizing µ(!).
For h ̸= 0, µ(!) ≥ 2πs(p − 1)/p, and we obtain

M ≤ g − 1
g + p − 1 − np

. (7)

If h = 0, r ≥ 3. First, let r ≥ 4. Clearly s ≥ 1 and since (0; 2, r−s. . ., 2, p, s. . ., p) is the
signature of a Fuchsian group with a minimal area under these conditions, we have

µ(!) ≥ 2π(−2 + (r − s)/2 + s(p − 1)/p)

≥ 2π(−2 + (4 − s)/2 + s(p − 1)/p)

= πs(p − 2)/p,

which gives

M ≤ 2(g − 1)(p − 1)

(g + p − 1 − np)(p − 2)
. (8)

Now let r = 3 and consider first the case p ≥ 5. If s = 3, then µ(!) ≥ 2π(p − 3)/p since
under these conditions, (0; p, p, p) is the signature of a Fuchsian group with the minimal
area. Thus

M ≤ 3(g − 1)(p − 1)

(g + p − 1 − np)(p − 3)
. (9)
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If s = 2 then (0; 2, p, p) is the signature of a Fuchsian group with the minimal area, and so
µ(!) ≥ π(p − 4)/p and hence

M ≤ 4(g − 1)(p − 1)

(g + p − 1 − np)(p − 4)
. (10)

If s = 1 and p ≥ 7, then a Fuchsian group with signature (0; 2, 3, p) has the minimal
possible area and so µ(!) ≥ π(p − 6)/3p and so

M ≤ 6(g − 1)(p − 1)

(g + p − 1 − np)(p − 6)
. (11)

If s = 1 and p = 5, then a Fuchsian group with signature (0; 2, 4, 5) has the minimal possible
area. So µ(!) ≥ π/10 and thus

M ≤ 16(g − 1)

g + 4 − 5n
(12)

If r = p = 3, and s = 3, then a Fuchsian group with signature (0; 3, 3, 6) has the minimal
possible area. So µ(!) ≥ π/3 and hence

M ≤ 12(g − 1)

g + 2 − 3n
. (13)

If s = 2, then a Fuchsian group with signature (0; 2, 3, 9) has the minimal possible area. So
µ(!) ≥ π/9 and therefore,

M ≤ 24(g − 1)

g + 2 − 3n
. (14)

Finally if s = 1, then a Fuchsian group with signature (0; 2, 3, 7) has the minimal possible
area. So µ(!) ≥ π/2 and thus

M ≤ 28(g − 1)

g + 2 − 3n
. (15)

Comparing inequalities (7)–(15) we obtain the result. ⊓(

6 Quasiplatonic surfaces

Recall that a compact Riemann surface is quasiplatonic if it is uniformized by a surface group
which is a normal subgroup of a triangle group.

Theorem 6.1 Let X be a quasiplatonic, properly (p, n)-gonal surface of genus g ≥ 2, with
full automorphism group G. Then

|G| ≤

⎧
⎨

⎩

84(g − 1) if p = 2, 3, 7,

40(g − 1) if p = 5,

12p(g − 1)/(p − 6) if p ≥ 7.

Proof Let X = H/&, G = !/& where ! is a triangle group and & a surface group
with signature (g;−). Let C be a (p, n)-gonal group and let C = !C/&. Since X is
properly (p, n)-gonal, C acts with fixed points. Thus !C has signature (n; p, r. . ., p), with
r > 0. Then !C ≤ ! has an elliptic element of order p, and so ! has an elliptic ele-
ment of order a multiple of p. The signature for a Fuchsian group ! with minimal area
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with the additional condition that p divides one of the periods is (0; 2, 3, p) for p ≥ 7,
hence µ(!) ≥ 2π(1 − (1/2) − (1/3) − (1/p)) = 2π(p − 6)/6p and so the result fol-
lows from the Riemann–Hurwitz formula. If p = 2 or 3 (or 7), the signature for a Fuch-
sian group ! with minimal area with the additional condition that p divides one of the
periods is (0; 2, 3, 7), so the result follows from the Riemann–Hurwitz formula and since
µ(!) ≥ 2π(1 − (1/2) − (1/3) − (1/7)). Finally, if p = 5, the signature for a Fuchsian
group ! with minimal area with the additional condition that 5 divides one of the periods
is (0; 2, 4, 5), so again the result follows from the Riemann–Hurwitz formula and since
µ(!) ≥ 2π(1 − (1/2) − (1/4) − (1/5)). ⊓(

Theorem 6.2 For every prime p and n > 1 there are just finitely many quasiplatonic strongly
(p, n)-gonal surfaces. More precisely, no surface of genus g > 42p(n − 1) is quasiplatonic
and strongly (p, n)-gonal.

Proof Let X = H/& be a quasiplatonic, strongly (p, n)-gonal surface with full automor-
phism group G = !/&, where ! is a triangle group and & a surface group with signature
(g;−). Let C be the unique (p, n)-gonal group. The quotient group G/C acts on a surface
of genus n > 1 and hence |G/C | ≤ 84(n − 1). It follows that |G| ≤ 84p(n − 1). Since G
acts with a triangular signature (k, l, m), by the Riemann–Hurwitz relation,

2g − 2 = |G|(1 − (1/k) − (1/ l) − (1/m)) < 84p(n − 1).

Hence, g < 1+42p(n−1). If there were infinitely many quasiplatonic, strongly (p, n)-gonal
surfaces, there would be infinitely many of a given fixed genus g0 < 1 + 42p(n − 1) which
is clearly absurd. ⊓(

Remark 6.3 If we allow n = 0, 1 the theorem is false: For n = 0 and p = 2, the strong
conditon is merely g > 1, and there are at least 3 quasiplatonic hyperelliptic surfaces for
every g ≥ 2 (the Bolza, Wiman, and Accola-Maclachlan surfaces). For n = 1 and p = 2,
and any positive integer N , there are infinite sequences of genera g in which there are more
than N distinct strongly (2, 1)-gonal quasiplatonic surfaces [31]. ⊓(

We conjecture that the strong hypothesis is essential.

Conjecture 6.4 For every prime p and n ≥ 0 there are infinitely many genera g ≥ 2 for
which there are quasiplatonic (p, n)-gonal surfaces.

7 Examples

We finish by considering a couple of examples to illustrate our results. In each of the exam-
ples, the signatures of subgroups of Fuchsian groups were calculated using Theorem 1 of
[28]. Other calculations were performed using the computer algebra system GAP [12].

Example 7.1 Let X denote Bring’s genus 4 surface. Then X is uniformized by a surface
group & which is a normal subgroup of index 120 of a Fuchsian group ! with signature
(0; 2, 4, 5), and the group G = !/& is isomorphic to the symmetric group S5. We tabulate
the conjugacy classes of each (p, n)-gonal group in Table 1.

Our calculations show that X is (2, 1)-gonal, (2, 2)-gonal, (3, 2)-gonal and (5, 0)-gonal.
Note that X is not strongly (p, n)-gonal for any p, and for each (p, n), we do not have
p > 2n + 1. Also, the action is not properly (3, 2)-gonal since there are no fixed points of
the action of a (3, 2)-gonal group on X . ⊓(
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Table 1 (p, n)-gonal classes for
Bring’s curve

p n Signature Number of groups in class

2 1 (1;2,2,2,2,2,2) 10

2 2 (2;2,2) 15

3 2 (2;–) 10

5 0 (0;5,5,5,5) 6

Table 2 (p, n)-gonal classes for
a Hurwitz curve of genus 14

p n Signature Number of groups in class

2 6 (6;2,2,2,2,2,2,2,2) 91

3 4 (4;3,3,3,3) 91

7 2 (2;7,7) 78

13 2 (2;–) 14

Example 7.2 Let X be a Hurwtiz curve of genus 14 (there are three such surfaces, up to
conformal equivalence, but it is straightforward to show that all three share the same (p, n)-
gonal properties). Then X is uniformized by a surface group & which is a normal subgroup
of index 1092 of a Fuchsian group ! with signature (0; 2, 3, 7), and the group G = !/&

is isomorphic to the group L2(13). We tabulate the conjugacy classes of each (p, n)-gonal
group in Table 2. Our calculations show that X is (2, 6)-gonal, (3, 4)-gonal, (7, 2)-gonal and
improperly (13, 2)-gonal.

For the proper action of the (7, 2)-gonal group, we have 7 > 2 ·2+1 = 5, so that Theorem
5.2 applies. A simple calculation shows that the upper bound on the number of conjugate
properly (7, 2)-gonal groups is attained in this case. ⊓(

We finish the paper with a conjecture motivated by the last example.

Conjecture 7.3 The bound from Theorem 5.2 is attained for infinitely many triples (g, p, n).
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