
Glasgow Math. J. 53 (2011) 501–522. C⃝ Glasgow Mathematical Journal Trust 2011.
doi:10.1017/S0017089511000097.

A DIOPHANTINE FROBENIUS PROBLEM RELATED
TO RIEMANN SURFACES

CORMAC O’SULLIVAN and ANTHONY WEAVER
Department of Mathematics and Computer Science, Bronx Community College, City University

of New York, 2155 University Avenue, Bronx, New York 10453, USA
e-mails: cormac.osullivan@bcc.cuny.edu; anthony.weaver@bcc.cuny.edu

(Received 9 March 2010; accepted 30 November 2010; first published online 10 March 2011)

Abstract. We obtain sharp upper and lower bounds on a certain four-dimensional
Frobenius number determined by a prime pair (p, q), 2 < p < q, including exact
formulae for two infinite subclasses of such pairs. Our work is motivated by the study
of compact Riemann surfaces which can be realised as semi-regular pq-fold coverings
of surfaces of lower genus. In this context, the Frobenius number is (up to an additive
translation) the largest genus in which no surface is such a covering. In many cases it
is also the largest genus in which no surface admits an automorphism of order pq. The
general t-dimensional Frobenius problem (t ≥ 3) is NP-hard, and it may be that our
restricted problem retains this property.

2010 Mathematics Subject Classification. Primary 14J50, 11D04.

1. Introduction. A set of integers {a1, a2, . . . at}, t ≥ 2, with ai > 1 and gcd = 1,
has a Frobenius number

g({a1, a2, . . . , at}),

which is the largest positive integer not representable in the form k1a1 + k2a2 + · · · +
ktat, where each ki is a non-negative integer. It is a simple exercise to show that
g({a1, a2, . . . , at}) exists under the stated conditions. Finding g({a1, . . . , at}) for a given
set {a1, . . . , at} is the linear Diophantine Frobenius problem [11]. In 1884, Sylvester
[12] established the formula

g({a1, a2}) = a1a2 − a1 − a2 (1.1)

for the two-dimensional Frobenius number. In 1990, it was shown by Curtis [2]
that for t ≥ 3 there is no finite set of polynomials {f1, . . . , fk} in t variables such that,
for each t-tuple {a1, a2, . . . , at} with greatest common divisor 1, g({a1, a2, . . . , at}) =
fi(a1, a2, . . . , at) for some i. Algorithms for computing the t-dimensional Frobenius
numbers exist [11], but the problem (for variable t ≥ 3) is NP-hard [10].

Throughout the paper, p, q will be primes satisfying 2 < p < q with p′, q′ denoting
the integers (p − 1)/2 and (q − 1)/2, respectively. The four integers

d0 = pq, d1 = p′q, d2 = pq′, d3 = (pq − 1)/2 (1.2)

have gcd = 1, so they determine the four-dimensional Frobenius number

gpq = g({d0, d1, d2, d3}). (1.3)
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The significance of the number gpq in (1.3) is that

gpq − pq + 1

is the largest integer such that no compact Riemann surface of that genus is a semi-
regular pq-fold cover of some other surface. This is explained in Section 3. A closely
related quantity of interest to us is νpq, the largest integer such that no compact Riemann
surface of that genus has an automorphism group that is cyclic of order pq. νpq is called
the largest non-genus of the group !pq. As a special case of Theorem 3.3 we have

gpq − pq + 1 ≤ νpq ≤ gpq. (1.4)

Our main results, listed in the next section, yield bounds for gpq. When q is sufficiently
large with respect to p, we obtain exact formulas for gpq as well as νpq. At the other
extreme we also give exact formulas for gpq and νpq when q = p + 2.

More generally, as we describe in Section 3, there is a Frobenius number gn so
that gn − n + 1 is the largest possible genus for a compact Riemann surface that is not
a semi-regular n-fold cover of another surface. For square-free odd n with s > 2 prime
factors, this will correspond to a more difficult 2s-dimensional Frobenius problem. νn,
the largest non-genus for the cyclic group !n, has been found in the case of n = pe for p
prime by Kulkarni and Maclachlan [7]. Kulkarni [6] showed that, for an arbitrary finite
group G, the genera where it is possible for a surface to admit G as an automorphism
group form an arithmetic progression. He showed that there also exists largest non-
genus in this progression. These genera are studied with generating functions in [8].

2. The main results. Define the function

fp,q(x, y, z, w) = xd0 + yd1 + zd2 + wd3, (2.1)

where the integers di are defined in (1.2). A positive integer n is representable if n =
fp,q(x, y, z, w) for x, y, z, w non-negative. The Frobenius number (1.3) is the largest
non-representable integer. Since p and q are fixed in all our arguments, we henceforth
put f = fp,q, and write g for gpq, suppressing the subscripts.

We define integers κ, κ ′, λ, λ′ as follows:

q = κp + λ, 1 ≤ λ ≤ p − 1, (2.2)
q′ = κ ′p′ + λ′, 0≤ λ′ ≤ p′ − 1. (2.3)

The integers

G0 ≡ f(p′ − 1, p − 1, κ,−1), G1 ≡ G0 − λd3, G2 ≡ G0 − (p − 3)d3 (2.4)

play an important role.

THEOREM 2.1. The Frobenius number g satisfies
(i) G2 ≤ g ≤ G0,

(ii) g = G0 if and only if κ + λ ≥ p,
(iii) g = G2 if p = 3 or (p, q) is a twin prime pair.

We note that if p = 3, then G2 = G0 and κ + λ ≥ 3, so that parts (i) and (ii) of
Theorem 2.1 imply that g = G0 (and hence also g = G2, as in part (iii)). For p > 3, the
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q

p

⇐⇒ g = G0, ⇒ g = G1, ⇒ G1 < g < G0, ⇒ G2 ≤ g < G1

13 31 53 73 101 127 151 179 199 233 263 283

17
37
59
79
103
131
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211
239
269
293

κ + λ ≥ p

Type II, κ + λ ≤ p− λ

Type II, κ + λ > p− λ

Type I, κ + λ ≤ p− λ

Figure 1. (Colour online) 2 < p < q < 300.

integer q = (p − 3)p + 1, if prime, is the largest such that κ + λ < p. Hence, we obtain
an easy corollary.

COROLLARY 2.2. If q ≥ (p − 3)p + 3, g = G0.

When κ + λ < p, by Theorem 2.1, G2 ≤ g < G0. These bounds can be tightened
in some cases. To treat these cases, we introduce some more notation.

Note that κ and λ have opposite parity (otherwise q is not prime), and κ ′ ≥ κ. If
κ + λ < p, then, in fact, κ + λ ≤ p − 2 and hence λ ≤ p − 3. It follows that there is a
unique non-negative integer τ < λ such that

τ + 2
τ + 1

<
p
λ

<
τ + 1

τ
. (2.5)

We allow τ = 0 so as to include the cases in which 2 < p
λ

. (It is also easy to see that
τ = ⌊λ/(p − λ)⌋.) Every pair (p, q) with κ + λ < p belongs to one of the following two
types:

Type I.
τ + 2
τ + 1

<
p′

λ′ , Type II.
p′

λ′ ≤ τ + 2
τ + 1

. (2.6)

THEOREM 2.3. For a Type II pair, the Frobenius number g satisfies
(i) G1 ≤ g < G0,

(ii) g = G1 if and only if κ + λ ≤ p − λ.

THEOREM 2.4. For a Type I pair with κ + λ ≤ p − λ, the Frobenius number g satisfies
(i) G2 ≤ g < G1,

(ii) g = G2 if (p, q) is a twin prime pair.

The above theorems indicate where g lies in relation to G0, G1 and G2. Figure 1
shows how these results are distributed over small prime pairs.
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With (1.4), we may translate the bounds on g into bounds on νpq. We can do better
in the case when κ + λ ≥ p, where, by Theorem 2.1, we have g = G0.

THEOREM 2.5. For primes 3 < p < q, with κ + λ ≥ p and q ̸= 2p − 1, 3p − 2, we
have

νpq = G0 − pq + 1.

Thus, νpq attains the lower bound of (1.4) in this case. For a twin prime pair, νpq lies
about halfway between the bounds of (1.4) (see Theorem 9.2). It appears that the upper
bound is not attained for any prime pair.

The Type I pairs that are not covered by Theorem 2.4 (white in Figure 1) are those
for which p > κ + λ > p − λ (see Remark 1, Section 7). We plan to treat these pairs in a
future paper. For now, we note that the formula for the Frobenius number gpq depends
on the number-theoretic relationship between q/p and q′/p′. Making this dependence
precise involves the continued fraction

q
p

= q1 + 1

q2 + 1
. . . 1

qn−1 + 1
qn

. (2.7)

The condition κ + λ ≥ p, appearing in Theorem 2.1(ii), is equivalent to q1 + 1 ≤ q′/p′.
It appears that the next case is

q1 + 1
q2

≤ q′

p′ < q1 + 1,

and that an exact, though more complicated, formula for g is also possible in this case.
It seems likely that gpq depends on where q′/p′ lies in relation to the convergents of (2.7).

3. The motivating problems. If the compact Riemann surface X admits a finite
group G of conformal automorphisms, then the quotient space Y = X/G is itself
a compact Riemann surface, and the quotient map % : X → Y is a holomorphic
branched covering map of degree n = |G| (the order of G). This means that % is
generically n-to-1 (or n-fold), but there is a finite subset B ⊂ Y , called the branch
set, over which the fibres have cardinality strictly less than n. The Riemann–Hurwitz
relation, a linear Diophantine equation, relates the topological data associated with
%, namely, the genera of the surfaces, the degree of the covering, and the cardinalities
of the fibres over the branch set. It is a generalisation of the multiplicative relation
between the Euler characteristics of the surfaces, χ (X) = n · χ (Y ) which holds for n-
fold unbranched covering maps. (See [3], Sections I.1 and I.2, for a fuller treatment of
these ideas.)

Branched covering maps need not arise as quotient maps of group actions. Those
that do must satisfy an extra regularity condition: for every y ∈ B, there exists a divisor
ny > 1 of n such that the fibre over y consists of precisely n/ny points, at which the n
sheets of the covering come together in sets of ny. The integers ny, y ∈ B, are called
the branching indices, and the covering is called semi-regular. When % : X → Y is a
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semi-regular branched covering, the Riemann–Hurwitz relation is

2(γ − 1) = 2n(η − 1) + n
∑

y∈B

(
1 − 1

ny

)
, (3.1)

where γ , η, are the genera of X , Y , respectively, n is the degree of the covering, and ny,
y ∈ B are the branching indices. If % can be realised as the quotient map of a group
action, the covering is called regular.

We now specialise to the case where n, the degree of the covering, is a square-free
odd integer with s ≥ 1 distinct prime factors pi, i = 1, 2, . . . , s. The 2s divisors of n are
in one-to-one correspondence with the set B of binary bit strings of length s. Let I
denote a bit string of length s, and 0, 1 the bit strings consisting of all 0s and all 1s,
respectively. Let nI denote the divisor of n associated with the bit string I , so that, for
example, n0 = 1 and n1 = n, and, more generally, pi is a factor of nI if and only if the
ith bit of I is 1. Then (3.1) implies that the Riemann–Hurwitz formula for an n-fold
semi-regular branched covering is

γ + n − 1 = x0n +
∑

I ̸=0

xI
n(nI − 1)

2nI
, (3.2)

where xI (I ̸= 0) is the number of points in the branch set with branching index nI ,
and x0 = η, the genus of Y . The integers

d0 = n, dI = n(nI − 1)
2nI

, I ∈ B, I ̸= 0

have gcd = 1, so there is a 2s-dimensional Frobenius number g({dI : I ∈ B}). By the
general theory of branched coverings, there is surface X of genus γ which is an n-fold
semi-regular covering if and only if there is a 2s-tuple (xI )I∈B of non-negative integers
satisfying (3.2). It follows that there is the largest non-genus of a semi-regular n-fold
covering, namely, the additive translate −n + 1 + g({dI : I ∈ B}) of the 2s-dimensional
Frobenius number g({dI : I ∈ B}).

PROBLEM I. For every square-free odd n with s distinct prime factors, determine
the largest non-genus of a semi-regular n-fold covering. This genus is gn − n + 1, where
gn is the 2s-dimensional Frobenius number g({dI : I ∈ B}).

The case s = 1 of Problem I follows immediately from the previous paragraph and
Sylvester’s formula (1.1) for the two-dimensional Frobenius number.

PROPOSITION 3.1. Let p be an odd prime. The largest non-genus of a p-fold semi-
regular branched covering is p′(p − 3) − p, the additive translate g({p, p′}) − p + 1 of the
two-dimensional Frobenius number g({p, p′}).

Note that this integer is < 0 for p = 3, 5, so that there is a semi-regular three- or
five-fold branched covering of every genus.

3.1. Group actions. We now give a set of necessary and sufficient conditions
for the existence of a regular cyclic n-fold branched covering % : X → Y , that is,
a covering realisable as the quotient map of a cyclic group !n of automorphisms
acting on the compact Riemann surface X . The conditions are a special case of a
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more general set of conditions for the existence of an action by an arbitrary finite
group G of order n. The necessary and sufficient condition in the general case is
the existence of a partial monodromy presentation of G, having a form dictated by
the genus of Y and the branching indices. If the genus of Y is η, and the branching
indices are r1, r2, . . . , rk, the monodromy presentation of G must have 2η + k generators
a1, b1, . . . , aη, bη, c1, . . . , ck, where ci has order ri and, among other possible relations,

η∏

i=1

[ai, bi]
k∏

j=1

cj = 1, (3.3)

where [ai, bi] denotes the commutator and 1 denotes the identity element in G. (For a
fuller explanation of the general case, see, for example, [1] or [9, Chapter III, Section
3] or [4, Section 1.7].)

LEMMA 3.2. Let n = p1, . . . , ps, s ≥ 1, a square-free odd integer with prime factors
p1, . . . , ps. Let γ ≥ 0. Let (xI ≥ 0)I∈B be a 2s-tuple satisfying (3.2) for n, γ . There is a
compact Riemann surface of genus γ admitting a group of automorphisms !n such that
quotient surface has genus x0 and xI points of branching indices nI , I ̸= 0, if and only if
the tuple (xI ≥ 0)I∈B satisfies the admissibility conditions

∑

I∈Bi

xI ̸= 1, i = 1, 2, . . . , s, (3.4)

x0 +
∑

I∈Bi

xI ̸= 0, i = 1, 2, . . . , s, (3.5)

where Bi ⊂ B is the set of bit strings of length s whose ith bit is 1.

Proof. A partial monodromy presentation of !n dictated by the tuple (xI ≥ 0)I∈B
would have 2x0 generators a0, b0, . . . , ax0

, bx0
of unspecified order, and xI generators

cI of order nI for each I ∈ B, I ̸= 0. Since all commutators are trivial in an abelian
group, the elements aj, bj can be omitted from the relation (3.3). If the ith condition in
(3.4) fails, then the group product on the left-hand side of (3.3) would contain exactly
one element of order divisible by pi, and hence could not be equal to the identity. If
the ith condition in (3.5) fails, the generating set would contain no elements of order
divisible by pi, a contradiction. This proves the necessity of the conditions. To prove
sufficiency of the conditions, one verifies that a partial monodromy presentation of !n
can be constructed in all other cases; this is left as an exercise. !

If there exist tuples (xI ≥ 0)I∈B satisfying (3.2) for some γ , n, but none of them
satisfy all the admissibility conditions in (3.4) and (3.5), then γ is the genus of an n-fold
semi-regular covering, but a non-genus for a !n action. There exists a largest non-genus
of a !n action [6], and it must be at least as large as the largest non-genus of an n-fold
semi-regular covering.

PROBLEM II. For every square-free odd n, determine the largest non-genus νn of !n.

THEOREM 3.3. Let n be a square-free odd integer with s ≥ 1 distinct prime factors.
With νn denoting the largest non-genus of a !n action, and gn the Frobenius number
g({dI : I ∈ B}), we have

gn − n + 1 ≤ νn ≤ gn. (3.6)
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Proof. The left-hand inequality is clear: γ = gn − n + 1 is the largest integer such
no 2s-tuple (xI )I∈B (admissible or not) satisfies (3.2). Hence, νn must be at least as
large as gn − n + 1. For the right-hand inequality, let (xI )I∈B be a non-negative 2s-
tuple satisfying (3.2) for some γ . The tuple obtained from (xI ) by replacing the final
coordinate x1 with x1 + 2 satisfies (3.2) with γ replaced by γ + n − 1. Moreover,
the new tuple satisfies the admissibility conditions (3.4) and (3.5). Thus, if there is a
surface of genus γ , which is an n-fold semi-regular covering, there is a surface of genus
γ + n − 1 that admits a !n action. Consequently, νn is no larger than gn − n + 1 + n −
1 = gn. !

In the case s = 1, the Riemann–Hurwtiz relation is

γ + p − 1 = x0p + x1p′, (3.7)

and the admissibility conditions are simply x0 + x1 ̸= 0 and x1 ̸= 1. It is easy to verify
that there is just one solution for (3.7) when γ = g({p, p′}), namely, the inadmissible
pair (x0, x1) = (p′ − 1, 1). Thus, the largest non-genus of a !p action is strictly greater
than the largest non-genus of a semi-regular p-fold covering (cf. Proposition 3.1). In
fact it is known ([7]) that νp = g({p, p′}) = gp. This shows that the upper bound in (3.6)
can be attained. We conjecture that s = 1 is the only case in which this occurs. We shall
show in Section 9 that when s = 2, the lower bound in (3.6) is attained for infinitely
many n = pq.

A group of square-free order is either cyclic or metacyclic (see, for example, [5],
Theorem 9.4.3). A metacyclic group has a normal cyclic subgroup with a cyclic factor
group. If s = 1, the only possible group is !p. If s = 2, there is a (non-abelian) metacyclic
group (of order pq) if and only if p is a divisor of q − 1. Such a group contains no
elements of order pq; hence, the quotient map has no branching indices equal to pq,
and the corresponding Frobenius problem is three-dimensional, not four-dimensional.
The admissibility conditions for a partial monodromy presentation are (naturally)
different. A formula for the largest non-genus of a metacyclic group action of order
pq is given by the second author in [13]. In Section 9 we give a formula for the largest
non-genus of !pq, which, given p, is valid for all but finitely many q > p.

Henceforth we treat Problems I and II exclusively for n a product of two distinct
primes. Until the last section, we revert to the purely number-theoretic question of
determining the four-dimensional Frobenius number g = g({d0, d1, d2, d3}), with di as
defined in (1.2).

4. Representability of integers > G0. To prove that a certain integer m is the
Frobenius number g, we need to establish that (a) m is not representable as f(x, y, z, w)
for any quadruple (x, y, z, w) of non-negative integers; and (b) all integers > m are
representable in this way. For (b), it suffices to show that all integers in the closed interval
[m + 1, m + d1] are representable, since if f(x, y, z, w) is a non-negative representation
of k ∈ [m + 1, m + d1], then f(x, y + l, z, w) is a non-negative representation of k + ld1,
for any l ≥ 0. In this and subsequent sections we apply this method to m = G0, G1 and
G2, as they are defined in (2.4). Having applied the method to G0, it will be possible to
reuse much of the work in the treatment of G1 and G2.

For x, y, z, w ∈ ", the equation f(x, y, z, w) = 0 determines the three-dimensional
vector subspace of "4, whose span is the hyperplane orthogonal to the vector
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(d0, d1, d2, d3). It has an obvious basis consisting of the following three vectors:

(d1,−d0, 0, 0), (0, d2,−d1, 0), (0, 0, d3,−d2).

It is easy to show that

e0 = (p′,−p, 0, 0), (4.1)
e1 = (p′, 0, 1,−p), (4.2)
e2 = (q′, 1, 0,−q), (4.3)

are also a basis. This basis is convenient since (an exercise shows) if there are integer
quadruples (x, y, z, w) and (x′, y′, z′, w′) such that f(x, y, z, w) = f(x′, y′, z′, w′), then
the vector (x − x′, y − y′, z − z′, w − w′) is an integer linear combination of e0, e1 and
e2. Thus, since f is linear, f(x, y, z, w) = f(x′, y′, z′, w′) if and only if (x′, y′, z′, w′) =
(x, y, z, w) + αe1 + βe2 + γ e3, for some α,β, γ ∈ !.

PROPOSITION 4.1. All integers > G0 are representable.

To prove this, we show that for each integer n in the closed interval [G0 + 1, G0 +
d1], a non-negative quadruple (x, y, z, w) exists such that f(x, y, z, w) = n. We first
construct quadruples (possibly with negative entries) representing the integers in
[G0 + 1, G0 + d1] and then show that they can be altered, if necessary, by adding an
integer linear combination of the vectors e0, e1, e2, so that they become non-negative
quadruples. We will make use of the following easily verified facts:

f(0,−1, 0, 1) = q′, (4.4)
f(0, 0,−1, 1) = p′, (4.5)
f(1, 0, 0,−2) = 1. (4.6)

We start by obtaining a non-negative representation of G0 + 1, using f(e1) = 0 and
(4.6):

G0 + 1 = f(p′ − 1, p − 1, κ,−1) − f(p′, 0, 1,−p) + f(1, 0, 0,−2)
= f(0, p − 1, κ − 1, p − 3). (4.7)

We proceed to show that G0 + 1 + t has a non-negative representation for all t ∈
[0, d1 − 1].

Let an integer t ∈ [0, d1 − 1] be represented with the division algorithm as

t = aq′ + bp′ + c, with a ≥ 0 maximal, b ≥ 0, 0 ≤ c ≤ p′ − 1. (4.8)

The triple (a, b, c) is uniquely determined by t and conversely.

LEMMA 4.2. If t ∈ [0, d1 − 1] has the representation (4.8), then
(i) a ≤ p − 1;

(ii) a = p − 1 =⇒ b = 0;
(iii) b ≤ κ ′,
(iv) b = κ ′ =⇒ c < λ′ =⇒ p > 3,
(v) b ≥ κ =⇒ a ≤ p − 2.

Proof. (i) and (v): If a ≥ p, or if a = p − 1 and b ≥ κ, then t ≥ p′q = d1, contrary to
assumption. (ii): If a = p − 1 and t ≤ p′q, then bp′ + c ≤ p′ − 1, which implies b = 0.
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(iii): If b > κ ′, a is not maximal. (iv): If b = κ ′ and c ≥ λ′, a is not maximal. When
p = 3, λ′ = 0 and hence c < λ′ is impossible. !

It follows from (4.4)–(4.6) that for t ∈ [0, d1 − 1],

G0 + 1 + t = f(0, p − 1, κ − 1, p − 3) + a · f(0,−1, 0, 1) + b · f(0, 0,−1, 1)
+c · f(1, 0, 0,−2).

Thus G0 + 1 + t = f(x, y, z, w), where

x = c, (4.9)
y = p − 1 − a, (4.10)
z = κ − 1 − b, (4.11)
w = p − 3 − 2c + a + b. (4.12)

By definition, x ≥ 0. By Lemma 4.2(i), y ≥ 0, and w ≥ 0 because c ≤ p′ − 1 is
equivalent to

p − 3 − 2c ≥ 0. (4.13)

Thus, z is the only component of the quadruple (x, y, z, w), which might be negative
(if b ≥ κ). If this is the case, then

b = κ + s for some 0 ≤ s ≤ κ ′ − κ. (4.14)

The upper bound on s is a consequence of Lemma 4.2(iii). We now show that there
is always an integer linear combination of the vectors (4.2) and (4.3), which when
added to the quadruple defined by (4.9)–(4.12) yields a non-negative quadruple. The
argument will be divided into three parts (Lemmas 4.3, 4.4 and 4.5) according to
whether s is, respectively, less than, equal to, or greater than κ ′ − κ − 1.

For notational convenience, we define the quadruple

e(u, v) ≡ (u − 1)e2 + (v + 1)e1, (4.15)

where e1 and e2 are the vectors (4.2) and (4.3), respectively, and u, v ∈ !.

LEMMA 4.3. If s < κ ′ − κ − 1,
(i) κ + s − (s + 1)p ≥ 0;

(ii) (x′, y′, z′, w′) = (x, y, z, w) + e(1, s) is a non-negative quadruple.

Proof. From q′ ≥ κ ′p′ we obtain q − 1 ≥ κ ′(p − 1) ⇐⇒ κ ′ − 1 ≥ κ ′p − q =
(κ ′ − κ)p + κp − q, and hence

κ ′ − 1 ≥ (κ ′ − κ)p − λ.

It follows from this that

κ ′ − 1 − l ≥ (κ ′ − κ)p − λ − l, for l ≥ 0.

In particular, since λ ≤ p − 1,

κ ′ − 1 − l ≥ (κ ′ − κ)p − lp if l ≥ 1. (4.16)
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Putting l = κ ′ − κ − s − 1 ≥ 1 in (4.16), we obtain (i). To prove (ii), we have x′ > x ≥ 0,
y′ = y ≥ 0, and z′ = −(s + 1) + (s + 1) = 0. We need only show that

w′ = p − 3 − 2c + a + b − (s + 1)p (4.17)

is non-negative. Recalling that b = κ + s, and using (4.13), we obtain

w′ ≥ κ + s − (s + 1)p.

Thus, w′ ≥ 0 is a consequence of (i). !

If s = κ ′ − κ − 1, then w ≥ (s + 1)p easily implies that the fourth coordinate of
(x, y, z, w) + e(1, s) is positive. The following lemma treats the case w < (s + 1)p, where
the fourth coordinate of (x, y, z, w) + e(1, s) is negative.

LEMMA 4.4. If s = κ ′ − κ − 1 and w < (s + 1)p, then

(i) c − λ′ ≥ 0;
(ii) (x′, y′, z′, w′) = (x, y, z, w) + e(0, κ ′ − 1) is a non-negative quadruple.

Proof. w = p − 3 − 2c + a + κ + s < (s + 1)p is equivalent to

2c > κ − 3 − s(p − 1),
c > (κ − 3)/2 − sp′,

c ≥ (κ − 1)/2 − sp′.

Putting s = κ ′ − κ − 1, we have

c ≥ (κ − 1 + p − 1)/2 − (κ ′ − κ)p′

≥ (κ + λ − 1)/2 − (κ ′ − κ)p′

= λ′,

where we have used λ ≤ p − 1 and Lemma 7.1. Thus, (i) is proved. x′ = c − λ′, which
is ≥ 0 by (i). y′ = p − 1 − a − 1 ≥ 0 by Lemma 4.2(v). z′ = −s − 1 + κ ′ = κ ≥ 1.
Finally, w′ = w + q − k′p = w − (κ ′ − κ)p + λ. Since w ≥ b = κ + s = κ ′ − 1, and
κ ′ − 1 ≥ (κ ′ − κ)p − λ by (4),

w′ = w − (κ ′ − κ)p + λ ≥ (κ ′ − κ)p − λ − (κ ′ − κ)p + λ = 0.

Thus, (ii) is proved. !

LEMMA 4.5. If s = κ ′ − κ, then (x′, y′, z′, w′) = (x, y, z, w) + e(0, κ ′) is a non-
negative quadruple.

Proof. By Lemma 4.2(iv), c < λ′. Since both c and λ′ are ≤ p′ − 1,

1 ≤ λ′ − c ≤ p′ − 1. (4.18)
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We have

x′ = c − q′ + (κ ′ + 1)p′ = p′ − (λ′ − c), (4.19)
y′ = p − 2 − a, (4.20)
z′ = −(s + 1) + κ ′ + 1 = κ, (4.21)
w′ = p − 3 − 2c + a + κ ′ + q − (κ ′ + 1)p

= −3 − 2c + a + q − κ ′(p − 1)
= −2 − 2c + a + q − 1 − κ ′(p − 1)
= −2 − 2c + a + 2(q′ − κ ′p′)
= −2 − 2c + a + 2λ′

= 2(λ′ − c) − 2 + a, (4.22)

x′, w′ ≥ 0 by (4.18). y′ ≥ 0 by Lemma 4.2(v). Finally, z′ = κ ≥ 1. !
Lemmas 4.3, 4.4 and 4.5 together constitute a proof of Proposition 4.1, which

implies that g ≤ G0 for all prime pairs 2 < p < q.

5. Representability of G0. In this section we prove the following.

PROPOSITION 5.1. G0 is representable if and only if κ + λ < p.

Suppose κ + λ < p, and put (x′, y′, z′, w′) = e(0, κ ′ − 1) + (p′ − 1, p − 1, κ,−1).
Since

e(0, κ ′ − 1) = (−q′ + κ ′p′,−1, κ ′, q − κ ′p) = (−λ′,−1, κ, λ) (5.1)

(the last equality being a consequence of κ ′ = κ), it easily verified that (x′, y′, z′, w′) is
a non-negative quadruple representing G0.

To prove the necessity of the condition, we employ a number-theoretic lemma
whose proof is a simple exercise.

LEMMA 5.2. Let m, n be relatively prime integers. If am + bn = a′m + b′n for any
a, a′, b, b′ ∈ !, then there exists an integer l such that a′ = a − ln and b′ = b + lm.

PROPOSITION 5.3. If (x0, y0, z0, w0) and (x, y, z, w) are integer quadruples such that
f(x0, y0, z0, w0) = f(x, y, z, w), there exists an integer l such that the system

{
x0p + (y0 + w0)p′ − lq′ = xp + (y + w)p′

z0p + w0 + lq = zp + w

is satisfied.

Proof. Using (2.1) and (1.2), we have

f(x0, y0, z0, w0) = x0pq + y0p′q + z0pq′ + w0(p′q + q′)
= q[x0p + (y0 + w0)p′] + q′[z0p + w0]. (5.2)

Since q and q′ are relatively prime, we can apply Lemma 5.2 with a, b being the two
expressions in square brackets in (5.2). !
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We now resume the proof of Proposition 5.1. Suppose G0 = f(x, y, z, w) with
x, y, z, w being non-negative, and further suppose (for a contradiction) that κ + λ ≥ p
(equivalently, κ ′ − κ > 0). Using Proposition 5.3 with (x0, y0, z0, w0) = (p′ − 1, p −
1, κ,−1), there exists an integer l such that

{
(p′ − 1)p + (p − 2)p′ − lq′ = xp + (y + w)p′

κp − 1 + lq = zp + w.
(5.3)

The second equation implies l ≥ 0, since the right-hand side is non-negative (by
assumption) and κp − 1 < q. To simplify the system (5.3), we express q′ in terms
of p′ and p. We have

q′ = κ ′p′ + λ′

= (κ ′ − 2λ′)p′ + 2λ′p′ + λ′

= (κ ′ − 2λ′)p′ + λ′p,

where, at the last step, we use p = 2p′ + 1. By Lemma 7.1, 2λ′ = κ + λ − 1 −
(κ ′ − κ)(p − 1), and hence

q′ = Bp′ + λ′p, (5.4)

where

B = (κ ′ − κ)p − λ + 1. (5.5)

Since κ ′ − κ > 0 and λ < p, B is positive.
Using (5.4), the first equation of (5.3) becomes

(p′ − 1 − lλ′)p + (p − 2 − lB)p′ = xp + (y + w)p′. (5.6)

Since p and p′ are relatively prime, Lemma 5.2 applies to the left-hand side, with a and
b being the two expressions in parentheses. Hence there exists t ∈ ! such that

x = p′ − 1 − lλ′ + tp′,

y + w = p − 2 − lB − tp. (5.7)

The first equation implies that t ≥ 0 (otherwise x < 0) and the second that t ≤ 0
(otherwise y + w < 0). Hence, t = 0. Putting q = κp + λ into the second equation of the
system (5.3), we see that w ≡ lλ − 1 (mod p). By (5.7), y + w ≤ p − 2 and, in particular,
since y and w are non-negative, w ≤ p − 2. The only possibility is w = lλ − 1. Hence,

y = p − 2 − lB − lλ + 1
= p − 1 − l[(κ ′ − κ)p + 1]
≥ p − 1 − l(p + 1) (5.8)

(since κ ′ − κ > 0). y ≥ 0 requires l = 0, and w ≥ 0 requires l > 0, a contradiction.
This completes the proof of Proposition 5.1. Combining this with Proposition 4.1,

we obtain Theorem 2.1(ii).
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6. Representability of integers > G1. In this section and the next we recycle, as far
as possible, the arguments in Sections 4 and 5, replacing G0 by G1. Since G1 = G0 − λd3,
we attempt this by simply reducing the fourth coordinate of each quadruple by λ. The
obstruction, of course, is that some of the fourth coordinates thereby become negative.

PROPOSITION 6.1. If κ + λ ≤ p − λ, all integers > G1 are representable.

Proof. It suffices to show that there is a non-negative quadruple representing
each integer in the closed interval [G1 + 1, G1 + d1]. We start with the representation
G1 + 1 = f(0, p − 1, κ − 1, p − 3 − λ), obtained from (4.7) by subtracting λ from the
fourth coordinate. The fact that κ + λ is odd and less than p, and that κ ≥ 1, together
imply that λ ≤ p − 3; thus this is a non-negative representation. Representing t ∈
[0, d1 − 1] by (4.8), we write G1 + 1 + t = f(x, y, z, w), where x, y, z are given by (4.9),
(4.10), (4.11), respectively, and

w = p − 3 − 2c + a + b − λ, (6.1)

which is obtained from (4.12) by subtracting λ.
If z ≥ 0, the possible obstruction is w < 0. Then a ≤ λ (since p − 3 − 2c ≥ 0).

Adding (5.1) to (x, y, z, w) yields a non-negative quadruple, provided c ≥ λ′. If c < λ′,

w ≥ p − 3 − 2(λ′ − 1) + a + b − λ

= p − 3 − (κ + λ − 3) + a + b − λ

≥ p − λ − (κ + λ)
≥ 0,

contrary to the assumption that w < 0.
If z < 0, then b = κ and c < λ′. We write G1 + 1 + t = f(x′, y′, z′, w′), where

x′, y′, z′ are given by (4.19), (4.20), (4.21), respectively, and

w′ = 2(λ′ − c) − 2 + a − λ, (6.2)

which is obtained from (4.22) by subtracting λ. The only possible obstruction is w′ < 0.
If this is the case, we add (5.1) to (x′, y′, z′, w′), yielding the quadruple

x′′ = p′ − 2λ′ + c,
y′′ = p − 3 − a,

z′′ = 2κ,

w′′ = 2(λ′ − c) − 2 + a.

The assumption w′ < 0 implies a < λ ≤ p − 3, so that y′′ ≥ 0. Clearly z′′ ≥ 0. w′′ ≥ 0
since it is equal to (4.22). If x′′ < 0, then c < 2λ′ − p′. If this is the case, then

w′ ≥ 2(λ′ − (2λ′ − p′ − 1)) − 2 + a − λ

≥ 2p′ − 2λ′ − λ

= 2p′ − (κ + λ − 1) − λ

= p − λ − (κ + λ)
≥ 0,
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contradicting the assumption that w′ < 0. Hence, (x′′, y′′, z′′, w′′) is a non-negative
quadruple. !

COROLLARY 6.2. If κ + λ ≤ p − λ, then g ≤ G1.

To complete the proofs of Theorems 2.3 and 2.4, we need necessary and sufficient
conditions for the representability of G1, and conditions under which there is an
integer > G1, which is not representable.

7. Representability of G1 and G1 + λ′. We need two preliminary results.

LEMMA 7.1. λ′ = κ + λ − 1
2

− (κ ′ − κ)p′.

Proof. By definition q − λ = κp, from which we obtain

(q − 1) − λ = κ(p − 1) + κ − 1,

q′ − κp′ = κ + λ − 1
2

,

q′ − κ ′p′ = κ + λ − 1
2

− (κ ′ − κ)p′.

The left-hand side of the last equation is the definition of λ′. !
LEMMA 7.2. If κ + λ < p, then
(i) κ = κ ′;

(ii) λ′ = κ + λ − 1
2

≥ 1;

(iii)
p′

λ′ <
p
λ

.

Proof. Using the formula for λ′ given in Lemma 7.1 and the assumption that κ +
λ < p, we have λ′ < p′ − (κ ′ − κ)p′. Since κ ′ − κ ≥ 0 and λ′ ≥ 0, the only possibility
is (i). The equality in (ii) follows from (i) and Lemma 7.1. The right-hand inequality
follows from κ + λ ≥ 3. To prove (iii), suppose p′

λ′ ≥ p
λ

. Then p′λ ≥ pλ′, and hence
using (ii),

2p′λ ≥ p(2λ′),
(p − 1)λ ≥ p(κ + λ − 1),

−λ ≥ p(κ − 1) ≥ 0,

a contradiction. !
Suppose G1 = f(x, y, z, w) with x, y, z, w being non-negative. Using Proposi-

tion 5.3 with (x0, y0, z0, w0) = (p′ − 1, p − 1, κ,−1 − λ), there exists an integer l such
that

{
(p′ − 1)p + (p − 2)p′ − lq′ = xp + (y + w)p′,

κp − 1 − λ + lq = zp + w.
(7.1)

The second equation implies l ≥ 0 (and the first that l cannot be too large). Imitating
the argument leading from (5.3) to (5.7), we see that there exists an integer t ≥ 0 such
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that

x = p′ − 1 − lλ′ + tp′, (7.2)
y + w = p − 2 − l + λ(l − 1) − tp. (7.3)

(We used B as defined in (5.5), but with κ ′ − κ = 0.) From the second equation of
(7.1) (putting q = κp + λ), we see that w ≡ (l − 1)λ − 1 (mod p). Then (7.3) yields
y ≡ p − 1 − l (mod p). Hence there exist µ, ν ∈ ! such that

y = νp + p − 1 − l
w = µp + (l − 1)λ − 1. (7.4)

By (7.3), µ + ν = −t. ν ≥ 0 from the assumption that y ≥ 0. Provided that l ≤ p − 1
(we shall see shortly that this assumption is justified), we may add a suitable multiple
of (4.1) to (x, y, z, w), and so assume ν = 0. Then µ = −t. From (7.4) and the second
equation of (7.1),

z = (l + 1)κ + t.

Thus a quadruple representing G1 has the general form

x = p′ − 1 − lλ′ + tp′ (0 ≤ t, 0 ≤ l ≤ p − 1),
y = p − (l + 1),
z = (l + 1)κ + t,
w = −tp + (l − 1)λ − 1.

(7.5)

(t = l = 0 yields the defining representation of G1.)

PROPOSITION 7.3. G1 is representable if and only if the pair is of Type I.

Proof. If the pair is of Type I, let t = τ and l = τ + 2 in (7.5). Then x = (τ + 1)
p′ − (τ + 2)λ′ − 1 is non-negative as a consequence of τ + 2

τ + 1 < p′

λ′ , and w = −τp +
(τ + 1)λ − 1 is non-negative as a consequence of p

λ
< τ + 1

τ
. Obviously z ≥ 0. It remains

only to verify that l ≤ p − 1, so that y ≥ 0. κ + λ < p implies λ ≤ p − 3, and τ < λ, so
that l = τ + 2 < λ + 2 ≤ p − 1.

Suppose the pair is of Type II and t and l are non-negative integers making (7.5)
a non-negative quadruple. x ≥ 0, w ≥ 0 imply, respectively,

l
t + 1

<
p′

λ′ , and
p
λ

<
l − 1

t
.

It follows that l > t + 1, and in particular,

t + 2
t + 1

≤ l
t + 1

<
p′

λ′ , and
p
λ

<
t + 1

t
<

l − 1
t

. (7.6)

Since the pair is of Type II, the left-hand inequality implies t > τ , while the right-hand
inequality, by the definition of τ , implies that t ≤ τ , a contradiction. !

From Corollary 6.2 and Proposition 7.3, we obtain the following.

COROLLARY 7.4. If the pair is of Type II with κ + λ ≤ p − λ, then g = G1. If the pair
is of Type I with κ + λ ≤ p − λ, then g < G1.
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The next proposition treats the remaining Type II pairs, and completes the proofs
of all statements regarding G0 and G1 in Theorems 2.1, 2.3 and 2.4.

PROPOSITION 7.5. If the pair is of Type II with κ + λ > p − λ, then G1 + λ′ is not
representable and hence g > G1.

Proof. Suppose G1 + λ′ = f(x, y, z, w) for a non-negative quadruple (x, y, z, w). A
general form for (x, y, z, w) is produced from (7.5) by using (4.6) to write G1 + λ′ =
G1 + λ′ · f(1, 0, 0,−2). Reducing the fourth coordinate of (7.5) by 2λ′ = κ + λ − 1
(Lemma 7.2(ii)), and increasing the first by λ′, we obtain

x = p′ − 1 − (l − 1)λ′ + tp′ (0 ≤ t, 0 ≤ l ≤ p − 1),
y = p − (l + 1),
z = (l + 1)κ + t,
w = −tp + (l − 2)λ − κ.

(7.7)

The assumptions x ≥ 0 and w ≥ 0 imply almost the same inequalities as in (7.6),
except that l is replaced by l − 1 where it occurs. Regardless, we arrive at the same
contradiction (t > τ and t ≤ τ ) which concluded the proof of Proposition 7.3. !

REMARK 1. For the remaining Type I pairs (having κ + λ > p − λ and coloured
white in Figure 1), both g < G1 and g > G1 are possible. A patient reader can verify,
for example, that g < G1 for the pair (11, 17) and g > G1 for the pair (29, 103).

8. The lower bound. It remains to prove that G2 is a universal lower bound on
the Frobenius number, and that it is sharp if p = 3 or if (p, q) is a twin prime pair.

PROPOSITION 8.1. G2 is not representable for any pair with κ + λ < p.

Proof. Suppose (p, q) is a pair for which G2 is representable. Using Proposition 5.3
with (x0, y0, z0, w0) = (p′ − 1, p − 1, κ, 2 − p), there exists an integer l such that

{
(p′ − 1)p + p′ − lq′ = xp + (y + w)p′,

κp + 2 − p + lq = zp + w,
(8.1)

for non-negative integers x, y, z, w. The second equation implies l ≥ 0. Collecting the
multiples of p and p′ on the left-hand side of the first equation, and using (5.4) and
(5.5) with κ = κ ′, and Lemma 5.2, we see that there exists t ∈ ! such that

x = p′ − 1 − lλ′ + tp′, (8.2)
y + w = 1 + l(λ − 1) − tp. (8.3)

Equation (8.2) implies t ≥ 0. Putting q = κp + λ into the second equation of (8.1),

p(κ(l + 1) − 1) + lλ + 2 = zp + w. (8.4)

It follows that w ≡ lλ + 2 (mod p), and, using (8.3), that y ≡ −(l + 1) (mod p). Hence,
there exist µ, ν ∈ ! such that

y = νp − (l + 1) (ν > 0),
w = µp + lλ + 2. (8.5)
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By (8.3), µ = −t + ν. From (8.4), z = κ(l + 1) − 1 + t + ν.

Thus, a quadruple representing G2 has the general form

x = p′ − 1 − lλ′ + tp′ (t, l ≥ 0),
y = νp − (l + 1) (ν > 0),
z = κ(l + 1) − 1 + t + ν,

w = −(t + ν)p + lλ + 2.

(8.6)

(t = l = 0, ν = 1 yields the defining representation of G2.) The requirements x ≥ 0 and
w ≥ 0 imply

(t + ν)p − 2
λ

≤ l ≤ (t + 1)p′ − 1
λ′ .

We show that this leads to a contradiction. Minimising the left-hand member of the
inequality by taking ν = 1, we obtain

(t + 1)p − 2
λ

≤ (t + 1)p′ − 1
λ′ . (8.7)

Since κ + λ < p, λ′ = (λ + (κ − 1))/2 ≥ λ/2, and hence 1/λ′ ≤ 2/λ, with equality if
and only if κ = 1. Rearranging (8.7), we obtain

(t + 1)
(

p
λ

− p′

λ′

)
≤

(
2
λ

− 1
λ′

)
,

which is a contradiction if κ = 1, because the left-hand side is positive (Lemma 7.2(iii)),
while the right-hand side is 0. Hence, assume κ > 1, and multiply both sides by λλ′ > 0.
This yields

(t + 1)(pλ′ − p′λ) ≤ 2λ′ − λ.

The right-hand side is equal to κ − 1 > 0, and the left-hand side can be rewritten as

1
2

(t + 1)(p(κ + λ − 1) − (p − 1)λ),

which simplifies to

1
2

(t + 1)(p(κ − 1) + λ).

Thus, we have

1
2

(t + 1)(p(κ − 1)) < κ − 1.

Cancelling the non-zero factor κ − 1 leads to the contradiction

(t + 1)p < 2.

!
Thus, G2 ≤ g for all pairs. The bound is attained if p = 3, by Theorem 2.1(iii). The

next proposition shows that the bound is also attained for twin prime pairs.
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PROPOSITION 8.2. If (p, q) is a twin prime pair, all integers > G2 are representable.

Proof. We adapt the proof of Proposition 4.1 (cf. Proposition 6.1). It suffices
to show that the integers in the closed interval [G2 + 1, G2 + d1] are representable.
We start with the representation G2 + 1 = f(0, p − 1, 0, 0), obtained from (4.7) by
subtracting p − 3 from the fourth coordinate, and using the fact that κ = 1. For twin
pairs, q′ = p′ + 1 and hence, from (4.4) and (4.5), we derive

f(0,−1, 1, 0) = 1. (8.8)

Let an integer t ∈ [0, d1 − 1] be represented with the division algorithm as

t = aq′ + b + c, with 0 ≤ a ≤ p − 1 (a maximal), b, c ≥ 0, b + c ≤ p′.

The bound on b + c comes from the maximality of a and the fact that q′ = p′ + 1. a
and b + c are uniquely determined by t and conversely. It follows from (4.4), (4.6) and
(8.8) that, for t ∈ [0, d1 − 1],

G2 + 1 + t = f(0, p − 1, 0, 0) + a · f(0,−1, 0, 1) + b · f(0,−1, 1, 0) + c · f(1, 0, 0,−2).

Thus G2 + 1 + t = f(x, y, z, w), where

x = c
y = p − 1 − (a + b)
z = b
w = a − 2c.

If a ≤ p′, then p − 1 − a ≥ p′ and we may assume c = 0 by increasing b, if necessary,
while maintaining y ≥ 0. In fact, y ≥ p − 1 − (p′ + p′) = 0, w = a ≥ 0, and we have
a non-negative quadruple. Hence suppose a = p′ + s, 1 ≤ s ≤ p′. Let b = p′ − i and
c = p′ − k, 0 ≤ i, k ≤ p′. Since b + c ≤ p′, i + k ≥ p′. We claim there is a choice of i
and k making (x, y, z, w) a non-negative quadruple. Clearly x, z ≥ 0 for all choices
of i, k. If i ≥ s, w = s + 2k − p′ ≥ i + k + k − p′ ≥ p′ + k − p′ = k ≥ 0. If i < s, put
i′ = i + (s − i) = s and k′ = k − (s − i), so that i′ + k′ = i + k ≥ p′. Let b = p′ − i′ and
c = p′ − k′. Then

x = p′ − k′ > p′ − k ≥ 0
y = i′ − s = 0
z = p′ − i′ = p′ − s ≥ 0
w = i′ + 2k′ − p′

= i′ + k′ + k′ − p′

≥ p′ + k′ − p′ = k′ ≥ 0.

!
REMARK 2. We conjecture that g = G2 only if (p, q) is a twin prime pair.

This completes the proofs of Theorems 2.1, 2.3 and 2.4.
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9. The largest non-genus of !pq. We return to the motivating question of
determining the largest non-genus νpq of a !pq action (Problem II, Section 3.1, n = pq).
We show that given p > 3, the lower bound in (1.4) (and (3.6)) is attained for all but
finitely many q > p. This is Theorem 2.5 which we restate here.

THEOREM 9.1. For primes 3 < p < q, with κ + λ ≥ p and q ̸= 2p − 1, 3p − 2, the
largest non-genus of !pq is

νpq = G0 − pq + 1,

where G0 is the integer defined at (2.4), equal to the Frobenius number g({d0, d1, d2, d3}).

Proof. We re-visit the argument in Section 4, showing that the quadruples
constructed there satisfy the admissibility conditions required by Lemma 3.2, or can
be altered (by adding integer linear combinations of the vectors e0, e1, e2), so as to
satisfy them. Bringing the notation in Lemma 3.2 into accord with that introduced
in Sections 1 and 2, we put p = p1, q = p2, and use x, y, z, w and d0, d1, d2, d3 instead
of x00, x10, x01, x11, and d00, d10, d01, d11, respectively. In this notation, conditions (3.4)
and (3.5) are

y + w ̸= 1, z + w ̸= 1, (9.1)
x + y + w ̸= 0, x + z + w ̸= 0. (9.2)

It is convenient to replace the condition y + w ̸= 1 with the stronger condition y +
w > 1. A non-negative quadruple satisfying (9.1), (9.2) and y + w ̸= 0 will be called
strongly admissible. The extra condition is imposed so that if (x, y, z, w) is strongly
admissible, then (x, y + 1, z, w) is admissible. With this guarantee, it is sufficient to
produce strongly admissible representations of the integers in the closed interval [G0 +
1, G0 + d1].

Suppose first that the quadruple (x, y, z, w) as defined by (4.9) - (4.12) is non-
negative, that is, assume z ≥ 0. One easily verifies that x + y + w ≥ p − 1 > 0, x + z +
w ≥ κ > 0, y + w ≥ p − 1 > 1. It remains to consider the possibility that

z + w = κ − 1 − b + p − 3 − 2c + a + b = 1.

This occurs if and only if
(i) κ = 1 and (a, b, c) = (1, b, p′ − 1); or

(ii) κ = 2 and (a, b, c) = (0, b, p′ − 1).
b ≤ κ − 1 by (4.11) and the assumption z ≥ 0. Thus in (i), b = 0. The triple (1, 0, p′ − 1)
corresponds to the inadmissible quadruple (p′ − 1, p − 2, 0, 1). κ = 1 is equivalent
to p + 2 ≤ q ≤ 2p − 1 or q′ ≤ 2p′. We have excluded q = 2p − 1, so we may assume
q′ < 2p′. It is easily verified that (p′ − 1, p − 2, 0, 1) + e(0, 0) is strongly admissible. In
case (ii), b = 0 or 1 and the two triples (0, 0, p′ − 1) and (0, 1, p′ − 1) correspond to the
inadmissible quadruples

(p′ − 1, p − 1, 1, 0) and (p′ − 1, p − 1, 0, 1), (9.3)

respectively. κ = 2 is equivalent to 2p + 1 ≤ q ≤ 3p − 2 or p ≤ q′ ≤ 3p′. Since we
have excluded q = 3p − 2, we may assume q′ < 3p′. Addition of e(0, 1) makes both
quadruples in (9.3) strongly admissible.
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Now assume that z < 0 in the quadruple (x, y, z, w) defined at (4.9)-(4.12). We
re-visit the proofs of Lemmas 4.3, 4.4 and 4.5.

If s < κ ′ − κ − 1, Lemma 4.3(ii) produces the non-negative quadruple

x′ = c + (s + 1)p′,

y′ = p − 1 − a,

z′ = 0,

w′ = p − 3 − 2c + a + κ + s − (s + 1)p.

If this is inadmissible, w′ ≤ 1. By (4.13) and Lemma 4.3(i), w′ is the sum of three
non-negative quantities: (p − 3 − 2c), a and κ + s − (s + 1)p. Since p − 3 − 2c is even,
w′ ≤ 1 implies p − 3 − 2c = 0, equivalently, c = p′ − 1. The other two quantities are
either both 0, or one is 0 and the other is 1. This yields three possible quadruples:
(x′, p − 1, 0, 0), which is strongly admissible, and

(x′, p − 1 − a, 0, 1), a = 0, 1, (9.4)

where x′ = p′ − 1 + (s + 1)p′. We show that these two quadruples cannot arise under
the assumed conditions. They are supposed to represent the integers

G0 + aq′ + (κ + s)p′ + p′ − 1, a = 0, 1.

Equating these two integers with the corresponding values of f on the two quadruples
in (9.4), we obtain, for a = 0, 1,

f(p′ − 1, p − 1, κ,−1) + aq′ + (κ + s)p′ + p′ − 1 = f(p′ − 1 + (s + 1)p′, p − 1 − a, 0, 1).

By the linearity of f this is equivalent to

0 = f(−(s + 1)p′, a, κ,−2) + aq′ + (κ + s)p′ + p′ − 1
= −(s + 1)p′d0 + a(d1 + q′) + κ(d2 + p′) − 2d3 + (s + 1)p′ − 1
= −(s + 1)p′(d0 − 1) + a(d1 + q′) + κ(d2 + p′) − 2d3 − 1. (9.5)

The identities

d1 + q′ = d2 + p′ = d3 and 2d3 + 1 = d0 (9.6)

follow easily from the di definitions in (1.2). Thus (9.5) is equivalent to

d0 = −(s + 1)p′(2d3) + (a + κ)d3

= (a + κ − 2p′(s + 1))d3

= (a + κ − (p − 1)(s + 1))d3

= (a + κ + s − (s + 1)p + 1)d3. (9.7)

The expression in parentheses on the right is equal to w′ + 1 = 2. Thus (9.7) is
equivalent to d0 = 2d3, contradicting the last identity in (9.6).
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If s = κ ′ − κ − 1, Lemma 4.4(ii) produces the non-negative quadruple

x′ = c − λ′,

y′ = p − 2 − a,

z′ = κ,

w′ = p − 3 − 2c + a + [κ ′ − 1 − (κ ′ − κ)p + λ]. (9.8)

We claim that the quantity in brackets in (9.8) is non-negative. This is a consequence
of

q′ ≥ κ ′p′,

q − 1 ≥ κ ′(p − 1),
κ ′ − 1 ≥ κ ′p − q

= (κ ′ − κ)p + κp − q
= (κ ′ − κ)p − λ. (9.9)

It follows that (9.8) is the sum of the three non-negative quantities (p − 3 − 2c), a,
and κ ′ − 1 − (κ ′ − κ)p + λ. If the quadruple is inadmissible, w′ ≤ 1 and hence the
even number p − 3 − 2c = 0, or equivalently, c = p′ − 1. The other two quantities are
either both 0, or one of them is 1 and the other is 0. If κ ′ − 1 − (κ ′ − κ)p + λ = 1,
then a = 0, and we have the strongly admissible quadruple (p′ − 1 − λ′, p − 2, κ, 1).
If κ ′ − 1 − (κ ′ − κ)p + λ = 0, then reversing the chain of inequalities ending at (9.9),
with inequalities replaced by equalities, q′ = κ ′p′. In that case, λ′ = 0 and we have the
quadruples

(p′ − 1, p − 2 − a, κ, 0), a = 0, 1, (9.10)

which are strongly admissible if κ > 1 (p > 3 is required here). If κ = 1, the quadruples
in (9.10) are inadmissible, but κ + λ ≥ p implies λ = p − 1 and q = 2p − 1, which is
excluded.

If s = κ ′ − κ, then Lemma 4.5 produces the non-negative quadruple (4.19)–(4.22).
If this is inadmissible, w′ ≤ 1. By (4.18), w′ is the sum of two non-negative quantities,
2(λ′ − c) − 2 and a. Since the former is even, it must be 0. Equivalently, c = λ′ − 1.
Hence, there are two quadruples corresponding to a = 0, 1:

(p′ − 1, p − 2, κ, 0), (p′ − 1, p − 3, κ, 1). (9.11)

The latter is strongly admissible (p > 3 is required) as is the former if κ > 1. If κ = 1
(p′ − 1, p − 2, κ, 0) is inadmissible. Then q′ ≤ 2p′, and, in fact, q′ < 2p′ since q ̸= 2p −
1. In that case, addition of e(0, 0) yields a strongly admissible quadruple. This concludes
the proof of Theorem 9.1. !

For a twin prime pair, it is not difficult to show that the integer f(0, p − 1, 1, 0)
has no other non-negative representation, and hence no admissible representation.
A straightforward argument, similar to the proof of Proposition 8.2, shows that all
the next d1 integers have strongly admissible representations. This yields the following
theorem, whose proof is omitted.



522 CORMAC O’SULLIVAN and ANTHONY WEAVER

THEOREM 9.2. For a twin prime pair (p, q), p > 3, the largest non-genus of !pq is

νpq = f(0, p − 1, 1, 0) − pq + 1 = G2 + 1 + d2 − pq + 1.

Hence, for twin prime pairs, νpq is about midway between the bounds of (1.4).
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