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Abstract

An exceptional point in the moduli space of compact Riemann surfaces is a unique surface class whose full automorphism
group acts with a triangular signature. A surface admitting a conformal involution with quotient an elliptic curve is called
elliptic–hyperelliptic; one admitting an anticonformal involution is called symmetric. In this paper, we determine, up to
topological conjugacy, the full group of conformal and anticonformal automorphisms of a symmetric exceptional point in the
elliptic–hyperelliptic locus. We determine the number of ovals of any symmetry of such a surface. We show that while the
elliptic–hyperelliptic locus can contain an arbitrarily large number of exceptional points, no more than four are symmetric.
c⌃ 2007 Elsevier B.V. All rights reserved.

MSC: 30F10; 32G15

1. Introduction

Exceptional points in moduli space are unique surface classes whose full group of conformal automorphisms acts
with a triangular signature. Such points are of interest for many reasons, one being that their defining equations (as
algebraic curves) have coefficients in a number field [1]. Determining the exceptional points inMg (the moduli space
in genus g) is not a simple matter. Although there are just finitely many possible triangular signatures satisfying the
Riemann–Hurwitz relation in genus g, not all of them correspond to a group action. Furthermore, several distinct
groups may act with the same signature, or one group may have topologically distinct actions with the same signature.
The problem can be attacked piecemeal by restricting attention to certain subloci inMg .

The n-hyperelliptic locus Mn
g � Mg consists of surfaces admitting a conformal involution (the n-hyperelliptic

involution), with quotient a surface of genus n. When n = 0, these are the classical hyperelliptic surfaces. When
n = 1, these are the elliptic–hyperelliptic surfaces. If g > 4n + 1, the n-hyperelliptic involution is unique and central
in the full group of conformal automorphisms of the surface, and this puts a strong structural restriction on any larger
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group of automorphisms of the surface. The n-hyperelliptic loci are important in building up a stratification of Mg ,
since if g > 4n + 3, the intersectionMn

g �Mn+1
g is empty ([8], Cor V.1.9.2; see also [13,19]).

For n > 1, there is a constant bound 168(n � 1) on the order of the full automorphism group of an n-hyperelliptic
surface of genus g. It follows that for sufficiently large g, and n > 1,Mn

g contains no exceptional points. The number
of exceptional points in M0

g is always between three and five (inclusive) and is precisely three for all g > 30 [18].
By contrast, we shall show (Theorem 6.2) that for infinitely many g, the number of exceptional points inM1

g is larger
than any preassigned positive integer (but, also, for infinitely many g, the number of exceptional points inM1

g is 0).
A symmetry of a Riemann surface is an antiholomorphic involution; a surface is symmetric if it admits a

symmetry. Under the correspondence between curves and surfaces, the fact that a surface X is symmetric means
that the corresponding curve is definable over R. In the group of conformal and anticonformal automorphisms of
X , nonconjugate symmetries correspond bijectively to real curves which are nonisomorphic (over R), and whose
complexifications are birationally equivalent to X . It is natural to ask which exceptional points are also symmetric. In
the 0-hyperelliptic locus with g > 30, the answer is: all of them. In Section 6 we show that if the elliptic–hyperelliptic
locus contains exceptional points, at most four of them are also symmetric.

If X has genus g, and ⌘ is a symmetry of X , the set of fixed points Fix(⌘) of ⌘ consists of k disjoint Jordan curves
called ovals, where 0  k  g + 1, by a theorem of Harnack [10]. In Section 7, using the topological classification of
conformal actions on elliptic–hyperelliptic Riemann surfces given in [17] (with a corrigendum supplied in Section 5),
together with a result of Singerman characterizing symmetric exceptional points [16], and a formula of Gromadzki [9],
we give presentations of the full group of conformal and anticonformal automorphisms of symmetric exceptional
points inM1

g , g > 5, and count the number of ovals of each conjugacy class of symmetry in such a group.
The outline of the paper is as follows. In Section 2 we give necessary preliminaries on NEC groups. In Section 3, we

study actions, reduced by the 1-hyperelliptic involution, on the quotient elliptic curves; the algebra and number theory
of the Gaussian and Eisenstein integers yield natural presentations of the reduced groups. In Section 4 we give the
topological classification of conformal actions with triangular signature on symmetric elliptic–hyperelliptic surfaces.
In Section 5 we state a corrigendum to a theorem in [17], which contained errors with respect to maximality of actions.
We thus obtain a complete and correct classification (Theorem 5.1) of full conformal actions on elliptic–hyperelliptic
surfaces. In the final two sections, we determine, up to topological conjugacy, the full group of conformal and
anticonformal automorphisms of the symmetric exceptional points in M1

g , and count the ovals corresponding to the
symmetries in such groups (Theorems 6.3 and 7.2).

We call attention to the related papers [2–5].

2. NEC groups

Every compact Riemann surface X of genus g ⌦ 2 can be represented as the orbit space of the hyperbolic plane
H under the action of a discrete, torsion-free group � , called a surface group of genus g, consisting of orientation-
preserving isometries ofH, and isomorphic to the fundamental group of X . Any group of conformal and anticonformal
automorphisms of X = H/� can be represented as ⇥/� , where ⇥ is a noneuclidean crystallographic (NEC) group
containing � as a normal subgroup. An NEC group is a cocompact discrete subgroup of the full group G of isometries
(including those which reverse orientation) ofH. Let G+ denote the subgroup of G consisting of orientation-preserving
isometries. An NEC group is called a Fuchsian group if it is contained in G+, and a proper NEC group otherwise.

Wilkie [20] and Macbeath [12] associated to every NEC group a signature which determines its algebraic structure
and the geometric nature of its action. It has the form

(g; ±; [m1, . . . , mr ]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk )}), (1)

where the numbers mi ⌦ 2 are called the proper periods, the brackets () (which may be empty) are called the period
cycles, the numbers ni j ⌦ 2 are called the link periods, and g ⌦ 0 is the orbit genus. An NEC group with signature of
the form (g; [�]; {(�), . . . , (�)}) is called a surface NEC group of genus g. A Fuchsian group is an NEC group with
signature of the form

(g; +; [m1, . . . , mr ]; {�}). (2)

In the particular case g = 0 we shall write briefly [m1, . . . , mr ]. A group with signature [m1, m2, m3] is called a
triangle group, and the signature is called triangular. If ⇥ is a proper NEC group with the signature (1), its canonical
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Fuchsian subgroup ⇥+ = ⇥ � G+ has the signature

(⇤ ; +; [m1, m1, . . . , mr , mr , n11, . . . n1s1 , . . . , nk1, . . . , nksk ]; {�}), (3)

where ⇤ = �g + k � 1 and � = 2 if the sign is + and � = 1 otherwise. The group with the signature (1) has a
presentation given by generators:

(i) xi , i = 1, . . . , r, (elliptic generators)
(ii) ci j , i = 1, . . . , k; j = 0, . . . si , (reflection generators)
(iii) ei , i = 1, . . . , k, (boundary generators)
(iv) ai , bi , i = 1, . . . , g if the sign is +, (hyperbolic generators)

di , i = 1, . . . , g if the sign is �, (glide reflection generators)

and relations

(1) xmi
i = 1, i = 1, . . . , r,

(2) cisi = e�1
i ci0ei , i = 1, . . . , k,

(3) c2
i j�1 = c2

i j = (ci j�1ci j )
ni j = 1, i = 1, . . . , k; j = 1, . . . , si ,

(4) x1 . . . xr e1 . . . eka1b1a�1
1 b�1

1 . . . agbga�1
g b�1

g = 1,

x1 . . . xr e1 . . . ekd2
i . . . d2

g = 1.

Any system of generators of an NEC group satisfying the above relations will be called a canonical system of
generators.

Every NEC group has a fundamental region, whose hyperbolic area is given by

µ(⇥) = 2⌦

⇥

�g + k � 2 +
r⌅

i=1

(1 � 1/mi ) + 1/2
k⌅

i=1

si⌅

i=1

(1 � 1/ni j )

⇤

, (4)

where � is defined as in (3). It is known that an abstract group with the presentation given by the generators (i)–(iv) and
the relations (1)–(4) can be realized as an NEC group with the signature (1) if and only if the right-hand side of (4) is
positive. If � is a subgroup of finite index in an NEC group ⇥ then it is an NEC group itself and the Riemann–Hurwitz
relation is

[⇥ : � ] = µ(� )/µ(⇥). (5)

3. Conformal actions on elliptic curves

Every elliptic curve is a quotient of the additive group C by a lattice L = L(�1, �2) � C of cofinite area with basis
{�1, �2} � C, and modulus µ = �1/�2 ⌘⇣ R (see, e.g., [11], Section 5.8). C/L and C/L✏ are conformally equivalent if
and only if the moduli µ and µ✏ of L and L✏ are equivalent under a Möbius transformation defined by an integer matrix
of determinant 1. In such a case, the lattices L,L✏ are similar, which means L✏ = ⌥L for some ⌥ ⇣ C\{0}. If L is self-
similar (⌥L = L, ⌥ ⌘= 1), then C/L admits a conformal automorphism with a fixed point. Every lattice L = L(�1, �2)

is self-similar by L = �1L, thus every elliptic curve admits the conformal involution h�1 : [z] ✓� [�z], where [z]
denotes the coset z + L. If L has modulus i , L = iL and h�1 is the square of the automorphism hi : [z] ✓� [i z] of
order 4. Similarly, if L has modulus ✏ = ei⌦/3, L = ✏L (since ✏2 = ✏� 1) and h�1 is the cube of the automorphism
h✏ : [z] ✓� [✏z] of order 6. Conjugates of hi , h✏ and their powers are the only automorphisms with fixed points on
elliptic curves. (This fact is also known as the crystallographic restriction, see [7], Section 4.32.)

Lattices with moduli equivalent to i or ✏ are closed under multiplication and hence admit ring structures. The rings
G � {a+bi | a, b,⇣ Z} and E � {a+b✏ | a, b,⇣ Z}, are known as the Gaussian and Eisenstein integers, respectively
(see, e.g. [6], Sections 174, 175). Each ring has a multiplicative norm ⌅ on the non-zero elements (see Table 1) taking
values in the positive integers; the elements of norm 1 are called units. Every nonzero, nonunit factorizes uniquely (up
to reordering and unit multiples) into primes; primes which differ by a unit multiple are called associates. Every ideal
is principal; a prime ideal is one which, when it contains a product, also contains one of the factors. An element is a
prime if and only if the principal ideal it generates is a prime ideal. Associate primes generate the same prime ideal.
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Table 1
The rings G and E

Ring Units Norm Splitting primes

G ±1, ±i ⌅G(a + bi) = a2 + b2 2, p ⌥ 1 mod 4
E ±1, ±✏, ±✏2 ⌅E (a + b✏) = a2 + ab + b2 3, p ⌥ 1 mod 6

Finally, every proper ideal factorizes uniquely as a product of proper prime ideals. A rational prime p splits in G or E
if it factorizes nontrivially. p splits in G if and only if p = 2 or p ⌥ 1 mod 4, for then p is expressible in the form
p = a2 + b2, a, b ⇣ Z, and thus p = (a + bi)(a � bi). Similarly, a prime p splits in E if and only if p = 3 or p ⌥ 1
mod 6, for then p is expressible in the form p = a2 + ab + b2, and thus p = (a + b✏)(a � b✏2). 2, 3 are the unique
splitting primes in G, E , respectively, whose prime factors are associates. See Table 1.

If L✏ � C is a lattice and L � L✏ is a sublattice of finite index, the group L✏/L = T , abelian of rank  2, acts by
translations on C/L (that is, without fixed points or short orbits). Conjugates of translations are translations, hence a
finite group of automorphisms of an elliptic curve has semidirect product structure T ⌃ H , where H is a cyclic group
generated by a power of hi or h✏. If |H | > 2, the moduli of L and L✏ are both i or both ✏ and L must be an ideal
in L✏: otherwise the action of H on C/L✏ cannot lift through the covering C/L � C/L✏ (with Galois group T ) to an
action of T ⌃ H on C/L.

LetR = G orR = E and let zR denote the principal ideal generated by z ⇣ R. Let w̃ denote the element w + zR
in the additive group R/zR = T . Since T decomposes as a direct sum of abelian p-groups, the following theorem
(communicated to us by Ravi S. Kulkarni) leads to a complete classification of finite groups of automorphisms of
elliptic curves.

Theorem 3.1. (a) If p is a rational prime,

G
pkG

=  1̃, ĩ! � Zpk ⇧ Zpk ; E
pkE

=  1̃, ⌃�✏! � Zpk ⇧ Zpk .

(b) If ⌦ ⇣ R \ Z is a factor of a splitting prime p,

1. p > 3 : R
⌦kR =  1̃! � Zpk

2. p = 2 : G
⌦2kG =  1̃, ĩ! � Z2k ⇧ Z2k ; G

⌦2k�1G =  ⌅1 � i, ĩ! � Z2k�1 ⇧ Z2k

3. p = 3 : E
⌦2kE =  1̃, ⌃�✏! � Z3k ⇧ Z3k ; E

⌦2k�1E =  ⇧1 + ✏, ✏̃! � Z3k�1 ⇧ Z3k .

The most general finite automorphism group G̃ of an elliptic curve has the structure

Zn ⇧ Zm ⌃ Zt , m|n, t |4 or t |6. (6)

If n/m  3, a presentation of G̃ is obtained by arguments of the following type. Let G̃ A =  1̃, ĩ! ⌃  hi !,
G̃ B =  ⌅1 � i, ĩ! ⌃  hi !, G̃C =  1̃, ✏̃! ⌃  h✏!, G̃ D =  ⇧1 + ✏, ✏̃! ⌃  h✏!, G̃ E =  1̃, ✏̃! ⌃  h✏2! and G̃ F =
 ⇧1 + ✏, ✏̃!⌃ h✏2!. Express hi as conjugation by an element c, and denote the elements ĩ, 1̃ by x, y. Then the relations
hi (1̃) = ĩ, hi (ĩ) = ĩ2 = �1̃ become cyc�1 = x, cxc�1 = y�1. In a similar way we obtain all the presentations given
in Table 2.

Groups of the more general type (6) (t > 2) are obtained by adjoining a relation of the form xm = ymk to one of
the presentations in Table 2, where k is a positive integer such that (k, n/m) = 1. A finite group is thereby defined if
and only if k satisfies certain other conditions: if t = 4, we must have k2 + 1 ⌥ 0 mod n/m; if t = 3 or 6, we must
have k2 � k + 1 ⌥ 0 mod n/m. The existence of such k’s is equivalent to the number-theoretical condition that all
prime factors of n/m split in the appropriate ring (G if t = 4, E if t = 3, 6).

We note that 2 splits in G and k2 + 1 ⌥ 0 mod 2 has the solution k = 1, so we obtain a group isomorphic to G̃ B by
adjoining the relation xn/2 = yn/2 to the presentation of G̃ A. Similarly, 3 splits in E and k2 � k + 1 ⌥ 0 mod 3 has the
solution k = 2, so we obtain a group isomorphic G̃ D or G̃ F by adjoining the relation xn/3 = y2n/3 to the presentation
of G̃C or G̃ E , respectively.
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Table 2
Some finite automorphism groups of elliptic curves

Group Relators

G̃ A = (Zn ⇧ Zn)⇥ Z4 xn , c4, [x, y], cyc�1x�1, cxc�1 y
G̃ B = (Zn ⇧ Zn/2)⇥ Z4 c4, vn , wn/2, cvc�1vw, cwc�1v�2w�1, [v, w]
G̃C = (Zn ⇧ Zn)⇥ Z6 yn , c6, cxc�1 y�1, cyc�1 y�1x, [x, y]
G̃ D = (Zn ⇧ Zn/3)⇥ Z6 c6, vn , wn/3, cvc�1wv�2, cwc�1wv�3, [v, w]
G̃ E = (Zn ⇧ Zn)⇥ Z3 c3, xn , cxc�1 y�1x, cyc�1x, [x, y]
G̃ F = (Zn ⇧ Zn/3)⇥ Z3 c3, vn , wn/3, cvc�1wv�1, cwc�1w2v�3, [v, w]

Table 3
(2, 4, 4)-triangular symmetric actions

Case in [17] � ⇤ µ n ⌥ 0 mod 4 n ⌥ 2 mod 4 n ⌥ 1 mod 2

4.2 0 0 1 An
0 , An

1 , Bn
00, Bn

01 An
0 , An

1 , Bn
00, Bn

01 An
0 , An

1
4.3 1 0 0 An

0 , An
1 , Bn

00, Bn
01 An

0 , An
1 , Bn

10, Bn
11

4.4 0 1 0 An
0 , An

1 , Bn
00, Bn

01
4.5 1 1 0 An

0 , An
1 , Bn

00, Bn
01

4.6 1 0 1 An
0 , An

1 , Bn
00, Bn

01 An
0 , An

1 , Bn
10, Bn

11

4. Triangular symmetric actions

If a group G of conformal automorphisms of an elliptic–hyperelliptic surface X = H/� of genus g > 5 acts with
a triangular signature, then G is isomorphic to ⇥/� , where ⇥ has one of the fifteen distinct triangular signatures

[k, l, m] = [2⇣1, 4⇣2, 4⇣3], [3⇣1, 3⇣2, 3⇣3] or [2⇣1, 3⇣2, 6⇣3], ⇣i ⇣ {1, 2}, (7)

where at least one ⇣i is equal to 2. If the signature of ⇥ arises from [2, 4, 4] (resp. [2, 3, 6], [3, 3, 3]) in this way, we
shall say that G determines a (2, 4, 4)-action (resp., a (2, 3, 6)-, (3, 3, 3)-action). Let ⇧ : ⇥ � G be an epimorphism
with kernel � . Then ⇧ preserves the (finite) orders of the generators of ⇥ and so G is generated by two elements g1
and g2 of orders k and l respectively whose product has order m. Singerman [16] showed that X is symmetric if and
only if either of the maps

g1 ✓� g�1
1 , g2 ✓� g�1

2 or g1 ✓� g�1
2 , g2 ✓� g�1

1 (8)

induces an automorphism of G. Here we list all actions with triangular signature on elliptic–hyperelliptic Riemann
surfaces for which the group G =  g1, g2! satisfies condition (8). We call them triangular symmetric actions.

Theorem 4.1. The topological type of a triangular symmetric (2, 4, 4)-action on an elliptic–hyperelliptic Riemann
surface is determined by a finite group G = An

⇣ or G = Bn
⇣⌅ with presentation

An
⇣ =  x, y, c, ↵ : ↵2, xn↵⇣, c4↵µ, [x, y]↵⇤ , cyc�1x�1, cxc�1 y↵�, R!, (9)

or

Bn
⇣⌅ =  w, v, c, ↵ : ↵2, c4↵µ, vn↵⇣, wn/2↵⌅, cvc�1wv↵�, cwc�1v�2w�1↵�+⇤ , [v, w]↵⇤ , R!, (10)

a Fuchsian group ⇥ = ⇥�,⇤ ,µ with signature [2(|��µ|+1), 4(µ+1), 4(|⇤ �µ|+1)] generated by x1, x2, x3, and an
epimorphism ⇧ : ⇥ � G defined by ⇧(x1) = c�2x, ⇧(x2) = c, ⇧(x3) = y�1c or ⇧(x1) = c�2v, ⇧(x2) = c, ⇧(x3) =
v�1w�1c, respectively, where R is the set of relations making ↵ central and ⇣, ⌅ ⇣ {0, 1}. All nonequivalent actions
are listed in Table 3.

Theorem 4.2. The topological type of the triangular symmetric (2, 3, 6)-action on an elliptic–hyperelliptic Riemann
surface is determined by a finite group of automorphisms G = Cn

⇣ or G = Dn
⇣⇣✏ with the presentation

Cn
⇣ =  x, y, c, ↵ : ↵2, yn⌅⇣, c6↵µ, cxc�1 y�1↵�, cyc�1 y�1x↵⇥ , [x, y]↵�+µ, R! (11)
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Table 4
(2, 3, 6)-triangular symmetric actions

Case in [17] � ⇥ µ n mod 12
0 ±1 ±2 ±3 ±4 ±5 6

6.2 0 1 0 Cn
0 , Dn

00 Cn
1 Cn

0 Cn
1 , Dn

10 Cn
0 Cn

1 Cn
0 , Dn

00
6.3 0 0 1 Cn

0 , Dn
00 Cn

1 Cn
0 Cn

1 , Dn
11

6.4 0 1 1 Cn
0 , Dn

00 Cn
1 Cn

0 Cn
1 , Dn

11
6.5 1 0 0 Cn

0 , Dn
00 Cn

1 Cn
0 Cn

1 , Dn
11

6.6 1 1 0 Cn
0 , Dn

00 Cn
1 Cn

0 Cn
1 , Dn

11
6.7 1 0 1 Cn

0 , Dn
00 Cn

1 Cn
0 Cn

1 , Dn
11 Cn

0 Cn
1 Cn

0 , Dn
00

6.8 1 1 1 Cn
0 , Dn

00 Cn
0 Cn

0 Cn
0 ,Dn

01 Cn
0 Cn

0 Cn
0 , Dn

00

Table 5
(3, 3, 3)-triangular symmetric actions

Case in [17] ⇥ ⇤ µ n mod 12
0 ±1 ±2 ±3 ±4 ±5 6

3.2 0 1 0 En
0 , Fn

00 En
1 En

0 En
1 , Fn

11
3.3 1 0 1 En

0 , Fn
00 En

0 En
0 En

0 , Fn
01 En

0 En
0 En

0 , Fn
00

3.4 1 1 1 En
0 , Fn

00 En
1 En

0 En
1 , Fn

11

or

Dn
⇣⇣✏ =  w, v, c, ↵ : ↵2, c6↵µ, vn↵⇣, wn/3↵⇣✏

, cvc�1wv�2↵�+µ+⇥ , cwc�1wv�3↵⇥+µ, [v, w]↵�+µ, R!, (12)

a Fuchsian group ⇥ = ⇥�,⇥,µ with the signature [2(� + 1), 3(⇥ + 1), 6(µ + 1)] generated by x1, x2, x3, and an
epimorphism ⇧ : ⇥ � G defined by ⇧(x1) = c3x, ⇧(x2) = c2 y, ⇧(x3) = c or ⇧(x1) = c3wv�1, ⇧(x2) = c2v, ⇧(x3) =
c, respectively, where R is the set of relations making ↵ central, n is a positive integer and ⇣ ⇣ {0, 1}. All nonequivalent
actions are listed in Table 4.

Theorem 4.3. The topological type of the triangular symmetric (3, 3, 3)-action on elliptic–hyperelliptic Riemann
surface is determined by a finite group of automorphisms G = En

⇣ or G = Fn
⇣⇣✏ with the presentation

En
⇣ =  x, y, c, ↵ : ↵2, c3↵µ, xn↵⇣, cxc�1 y�1x, cyc�1x↵⇥ , [x, y]↵⇤ , R! (13)

or

Fn
⇣⇣✏ =  w, v, c, ↵ : ↵2, c3↵µ, vn↵⇣, wn/3↵⇣✏

, cvc�1wv�1↵⇥ , cwc�1w2v�3↵⇥ , [v, w]↵⇤ , R!, (14)

a Fuchsian group ⇥⇥,⇤ ,µ with the signature [(µ + 1)3, (⇥ + 1)3, (|⇤ � ⇥ � µ| + 1)3] generated by x1, x2, x3
and an epimorphism ⇧ : ⇥ � G defined by ⇧(x1) = c, ⇧(x2) = c�2x, ⇧(x3) = x�1c or ⇧(x1) = c, ⇧(x2) =
c�2wv�1, ⇧(x3) = vw�1c, respectively, where R is the set of relations making ↵ central, n is a positive integer and
⇣, ⇣✏ ⇣ {0, 1}. All nonequivalent actions are listed in Table 5.

Proof. The proofs of above three theorems are similar and therefore we give the argument concerning the (2, 3, 6)-
action only. By [17], Theorem 4.1, such an action arises by the lifting an automorphism group G̃ of an elliptic curve
with a presentation which differs from G̃C in Table 2 by having the additional relation x̃m = ỹmk , for some integers
m, k such that m divides n and k2�k+1 ⌥ 0 (n/m). We shall prove that the symmetric character of X requires m = n
or m = n/3, which leads to the presentations (11) or (12), respectively. Here ⇧(x1) = c3x, ⇧(x2) = c2 y, ⇧(x3) = c
and it is easy to check that the assignment ⇧(xi ) � ⇧(x j )

�1, ⇧(x j ) � ⇧(xi )
�1 does not induce an automorphism of

G for any two distinct i, j ⇣ {1, 2, 3}. So assume that ✓ : G � G is induced by the assignment ⇧(x1) � ⇧(x1)
�1

and ⇧(x2) � ⇧(x2)
�1. Then ✓(x) = x�1,✓(y) = x�1 y↵⇥ and ✓(c) = c�1 y�1x↵� . Thus ✓(x)m = ✓(y)mk↵⌅ implies

(x̃)�m = (x̃�1 ỹ)mk = x̃�mk ỹmk = x̃m�mk , where x̃ is the image of x in G̃ = G/ ↵!. Since x̃2m = x̃mk , it follows that
k ⌥ 2 (n/m). Furthermore, k2�k+1 ⌥ 0 (n/m) which implies 3 ⌥ 0 (n/m). Thus m = n or m = n/3. If m = n then
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G has the presentation (11) and G̃ ↵= G̃C . In the case m = n/3 it is convenient to replace the generators x, y by w = xy
and v = y. Since xn/3 = y2n/3↵⌅ , it follows that xn = ↵⌅ . On the other hand, xn = cxnc�1 = yn↵n� = ↵⇣+n�

which implies that ↵⌅ = ↵⇣+n� . Thus wn/3 = xn/3 yn/3↵⇤ n/3(n/3�1)/2 = ↵⌅+⇣+⇤ n/3(n/3�1)/2 = ↵n�+⇤ n/3(n/3�1)/2.
Consequently G has the presentation (12) and G̃ ↵= G̃ D .

The expression for the signature of ⇥ in terms of the parameters �,⇥, µ is an easy computation following from
ai = ⇣i � 1, i = 1, 2, 3 and the relations � = a1, ⇥ = a2, µ = a3 and ⇤ = a1 + a3 = � + µ, which were proved
in [17]. �

5. Full conformal actions: A corrigendum

A Fuchsian group ⇥(� ) with signature � is finitely maximal if there is no Fuchsian group ⇥(� ✏) with signature
� ✏ containing it with finite index. Most Fuchsian groups are finitely maximal, but there a few infinite families
of signatures, together with a few other individual signatures, for which the corresponding Fuchsian groups are
not finitely maximal (see [15]). Suppose ⇥(� ) is not finitely maximal. Let ⇥(� ✏) be a Fuchsian group such that
⇥(� ) < ⇥(� ✏) with finite index. Let G < G ✏ be finite groups such that [G ✏ : G] = [⇥(� ✏) : ⇥(� )]. An epimorphism
⇧ : ⇥(� ) � G (with kernel a surface group of genus g) determines a G-action on X = H/ker(⇧). ⇧ may extend to an
epimorphism ⇧ ✏ : ⇥(� ✏) � G ✏ (with the same kernel). If it does, G is not the full automorphism group of the surface
X = H/ker(⇧). When �, � ✏ are both triangular, the G-action and the G ✏-action both determine the same exceptional
point X .

Clearly, if G acts on an elliptic–hyperelliptic surface with a signature that is either finitely maximal or extends
with finite index only to signatures which are not elliptic–hyperelliptic, it must be the full group of conformal
automorphisms of the surface. It turns out that the converse is also true: no other triangular signature is the signature
of the full group of conformal automorphisms of an elliptic–hyperelliptic surface. This is not obvious, but is a
consequence of the following theorem, which is a corrigendum of Theorem 8.1 in [17].

Theorem 5.1. A group G = ⇥/� is the full group of conformal automorphisms of an elliptic–hyperelliptic
Riemann surface X = H/� of genus g > 5 if and only if G is one of the groups listed in the
Theorems 3.1–7.1 of [17] and ⇥ has a finitely maximal signature or ⇥ has one of the following nonmaximal
signatures: [2, 2, 4, 4], [4, 4, 8], [2, 4, 8], [2, 2, 8, 8], [2, 6, 6], [2, 2, 6, 6] corresponding to the cases 4.1, t = 1;
4.5, t = 0; 4.4, t = 0; 4.6, t = 1; 6.2, t = 0; 6.2, t = 1, respectively, in [17].

6. Exceptional points

InM0
g , g > 30, there are exactly three exceptional points [18], and Singerman’s results [16] imply that these three

exceptional points are also symmetric. We show in this section that the elliptic–hyperelliptic locusM1
g can contain an

arbitrarily large number of exceptional points, but no more than four of them are also symmetric.
Let G be the full group of conformal automorphisms of a surface X ⇣ M1

g , and let ↵ denote the 1-hyperelliptic
involution. Suppose G/ ↵! is of the form (6) and G acts with a triangular signature, so that X is an exceptional point.
Then G has order 2nmt and t > 2. Let Rt denote the ring G if t = 4 and E if t = 3 or 6. We recall that the prime
factors of n/m must split inRt .

Lemma 6.1. Let p > 3 be a splitting prime factor of n/m with multiplicity µ > 0 (i.e, pµ is the highest power of
p dividing n/m). Then the p-Sylow subgroup of (6), and hence of G, has 1 + ⌧µ/2� distinct possible isomorphism
types.

Proof. Since p splits in Rt , p = ⌦ · ⌦ ✏, and since p > 3, ⌦ , ⌦ ✏ are nonassociate primes which therefore generate
distinct ideals ⌦Rt , ⌦ ✏Rt . Thus the p-Sylow subgroup of (6), which is also the p-Sylow subgroup of G, could be any
one of the following:

Rk

⌦ l(⌦ ✏)µ�lRk
� Rk

⌦ lRk
⇧ Rk

(⌦ ✏)µ�lRk
� Zpl ⇧ Zpµ�l , 0  l  ⌧µ/2�. (15)

Theorem 6.2. There exist infinite sequences of genera in which the number of exceptional points inM1
g is larger than

any preassigned positive integer.
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Proof. If G is the full group of conformal automorphisms of an exceptional point X ⇣ M1
g , it acts with one of

signatures [2, 4, 8], [4, 4, 8], [2, 6, 6], [2, 3, 12], [4, 3, 6], [4, 6, 6] or [4, 6, 12], and by (5), the ratio [nm : (g � 1)] is

[a : b] ⇣ {[2 : 1], [2 : 3], [1 : 1], [2 : 3], [2 : 5], [1 : 3]}.
These ratios place restrictions on the multiplicities of prime divisors of g � 1. If p is a nonsplitting prime in Rt , the
p-Sylow subgroup of Zn ⇧ Zm is of the form Zpk ⇧ Zpk by Theorem 3.1. Thus if p > max{a, b}, it must have even
(possibly 0) multiplicity in g�1. There is no restriction on the multiplicity of a splitting prime p > max{a, b} in g�1.
If the multiplicity of such a splitting prime is µ, by Lemma 6.1, there are at least 1 + ⌧µ/2� different isomorphism
types for G, hence at least that many distinct exceptional points inM1

g .
Given a, b, t , an Rt -splitting prime p > 5, and an arbitrary positive integer N , there exist infinite sequences of

genera g such that the multiplicity of p in g � 1 is greater than N . It follows that there are infinitely many genera g in
which the number of exceptional points in the elliptic–hyperelliptic locus is larger than N . �

It is easy to construct infinite sequences of genera in which the elliptic–hyperelliptic locus contains no exceptional
points. For example, gn = 1 + p2n+1, n = 0, 1, . . . , where p is any prime such that p ⌥ �1 mod 12, is such a
sequence, since p has odd multiplicity in gn � 1, and does not split in G or in E .

We now restrict attention to exceptional points which are also symmetric.

Theorem 6.3. The genus g of a symmetric exceptional point X ⇣ M1
g is ka2 + 1 for some integer a and

k ⇣ {1, 2, 3, 6, 10, 30}. For such g there are the following nonequivalent triangular symmetric actions on X; those in
bold type correspond to the full automorphism groups.

1. k = 1 and a ⌥ 0 (2) : 4.2.Ba
00, Ba

01, 4.3.Aa
0, Aa

1, 4.4.B2a
00, B2a

01, 4.6.Aa
0, Aa

1, 6.2.Ca
0, 3.3.Ea

0 ; and 6.8.Da
00 if

a ⌥ 0 (3),
2. k = 1 and a ⌥ 1 (2) : 6.2.Ca

1, 3.3.Ea
0 ; and 6.8.Da

01 if a ⌥ 0 (3),
3. k = 2 and a ⌥ 0 (2) : 4.2.Aa

0, Aa
1 , 4.3.B2a

00 , B2a
01 , 4.4.A2a

0 , A2a
1 , 4.6.B2a

00 , B2a
01 , 6.3.C2a

0 , 6.7.Ca
0 , 3.2.E2a

0 ; and
6.4.D2a

00 , 6.5.D2a
00, 3.4.F2a

00 if a ⌥ 0 (3),
4. k = 2 and a ⌥ 1 (2) : 4.2.Aa

0, Aa
1, 4.3.B2a

11 , B2a
10 , 4.4.A2a

0 , A2a
1 , 4.6.B2a

10 , B2a
11 , 6.7.Ca

1 , 6.3.C2a
1 3.2.E2a

1 ; and
6.4.D2a

11 , 6.5.D2a
11, 3.4.F2a

11 if a ⌥ 0 (3),
5. k = 3 and a ⌥ 0 (2) : 4.5.B2a

00, B2a
01, 6.8.Ca

0, 6.2.D3a
00, 3.3.F3a

00 ,
6. k = 3 and a ⌥ 1 (2) : 6.8.Ca

0, 6.2.D3a
10, 3.3.F3a

01 ,

7. k = 6 and a ⌥ 0 (2) : 4.5.A2a
0 , A2a

1 , 6.3.D6a
00, 6.4.C2a

0 , 6.5.C2a
0 , 6.7.D3a

00 , 3.2.F6a
00 , 3.4.E2a

0 ,

8. k = 6 and a ⌥ 1 (2) : 4.5.A2a
0 , A2a

1 , 6.3.D6a
11, 6.4.C2a

1 , 6.5.C2a
1 , 6.7.D3a

11 , 3.2.F6a
11 , 3.4.E2a

1 ,

9. k = 10 : 6.6.C2a
0 or 6.6.C2a

1 according to a being even or odd,
10. k = 30 : 6.6.D6a

00 or 6.6.D6a
11 according to a being even or odd.

Proof. Let G = ⇥/� be a group of conformal automorphisms acting with a triangular signature on a symmetric
elliptic–hyperelliptic surface X = H/� of genus g. Thus � is a surface group of genus g and ⇥ has one of the
signatures (7). Let ↵ be the 1-hyperelliptic involution of X . Theorems 4.1–4.3 show that the reduced group G/ ↵! is
isomorphic to one of groups listed in Table 2. The genus of X is determined as in the following example. Suppose
G/ ↵! ↵= G̃ D . Then the order of G is 12n2/3 = 4n2 and the Riemann–Hurwitz relation (5) where ⇥ has signature
[2⇣1, 3⇣2, 6⇣3] with at least one ⇣i equal to 2, is g = 1+2n2(1�1/2⇣1�1/3⇣2�1/6⇣3). The expression in parentheses
is either 1/4, 5/12, 1/2, 1/6, 1/4 or 1/12. Since g is an integer, n must be divisible by 2, 6, 1, 3, 2, 6, respectively.
Thus there exists an integer a such that g = ka2 + 1, for k = 2, 30, 1, 3, 6, respectively. Similar computations using
the other reduced groups G/ ↵! in Table 2, and compatible signatures, yield the general result g = ka2 + 1 for some
k ⇣ {1, 2, 3, 6, 10, 30}.

The actions are determined as follows: Given a signature and a reduced group G/ ↵! (compatible with the
signature), we use the tables in Theorems 4.1–4.3, together with the value of k calculated as above. For example,
actions with signature [4, 6, 6] have reduced group G̃ D or G̃C , and correspond to Case 6.6 in Table 4. The
Riemann–Hurwitz relation using G̃ D implies n is divisible by 6 and k = 30. Putting n = 6a, we have n ⌥ 0 or
⌥ 6 mod 12 according as a is even or odd. Thus the actions are 6.6D6a

00 if a is even and 6.6.D6a
11 if a is odd. Similarly,

the Riemann–Hurwitz relation using G̃C implies n is divisible by two and k = 10. Thus n ⌥ 0, ±2, ±4 or 6 mod
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Table 6
Extensions of triangular actions on symmetric surfaces inM1

g

g � G � ✏ G✏ � ✏ : �
a2 + 1 [4, 8, 8] 4.2.Ba

00, Ba
01 [2, 8, 8] 4.6.Aa

0 , Aa
1 2

2a2 + 1 [4, 8, 8] 4.2.Aa
0 , Aa

1 [2, 8, 4] 4.4.A2a
0 , A2a

1 4

2a2 + 1 [4, 8, 8] 4.2.Aa
0 , Aa

1 [2, 8, 8] 4.6.B2a
00 , B2a

01 2

a2 + 1 [4, 4, 4] 4.3.Aa
0 , Aa

1 [2, 4, 8] 4.4.B2a
00 , B2a

01 2

2a2 + 1 [4, 4, 4] 4.3.B2a
00 , B2a

01 [2, 4, 8] 4.4.A2a
0 , A2a

1 2

a2 + 1 [2, 8, 8] 4.6.Aa
0 , Aa

1 [2, 8, 4] 4.4.B2a
00 , B2a

01 2

2a2 + 1 [2, 8, 8] 4.6.B2a
00 , B2a

01 [2, 8, 4] 4.4.A2a
0 , A2a

1 2

2a2 + 1 [2, 6, 12] 6.4.D2a
00 [2, 3, 12] 6.3.C2a

0 3

6a2 + 1 [2, 6, 12] 6.4.C2a
0 [2, 3, 12] 6.3.D6a

00 3

6a2 + 1 [4, 3, 12] 6.7.D3a
00 [2, 3, 12] 6.3.D6a

00 4

2a2 + 1 [4, 3, 12] 6.7.Ca
0 [2, 3, 12] 6.3.C2a

0 4

2a2 + 1 [6, 3, 3] 3.2.E2a
0 [2, 3, 12] 6.3.C2a

0 2

6a2 + 1 [6, 3, 3] 3.2.F6a
00 [2, 3, 12] 6.3.D6a

00 2

3a2 + 1 [3, 6, 6] 3.3.F3a
00 [2, 6, 6] 6.2.D3a

00 2

a2 + 1 [3, 6, 6] 3.3.Ea
0 [2, 6, 6] 6.2.Ca

0 2

2a2 + 1 [6, 6, 6] 3.4.F2a
00 [6, 3, 3] 3.2E2a

0 3

12. From Table 4 the actions are either 6.6.C2a
0 or 6.6.C2a

1 . Since [4, 6, 6] does not extend to an elliptic–hyperelliptic
signature, these actions are full actions. This yields statements 9 and 10 of the theorem. The other statements are
derived similarly. We appeal to Theorem 5.1 to determine extensions of G-actions with signature � to G ✏-actions with
signature � ✏. These are given in Table 6. �

Corollary 6.4. If M1
g contains exceptional points, at most four of them are symmetric.

Proof. Full actions are in bijection with exceptional points. If g � 1 = ka2 = k✏a✏2, for k, k✏ ⇣ {1, 2, 3, 6, 10, 30},
then k = k✏ and hence also a = a✏. Thus the ten enumerated cases in Theorem 6.3 are mutually exclusive. One merely
observes that the maximum number of full actions in any one case is four.

7. Symmetries of exceptional points

Let X = H/� be a symmetric elliptic–hyperelliptic Riemann surface whose full group of conformal
automorphisms G = ⇥/� acts with a triangular signature [k, l, m]. The existence of a symmetry on X means that ⇥
is the canonical Fuchsian group of a proper NEC group ⇧⇥, containing ⇥ with index 2, and containing � as a normal
subgroup. Then ⇥̃/� = A is the full group of conformal and anticonformal automorphisms of X . Comparison of (1)
and (3) yields two possibilities for the signature of ⇧⇥: (0; +; [�]; (k, l, m)), and, if k = l, (0; +; [k]; {(m)}); we shall
see that, in this context, the second possibility does not occur.

Let ⇧̃ be the canonical epimorphism ⇧⇥ � A with kernel � . A symmetry � ⇣ A is the image under ⇧⇧ of an element
d from the subset ⇧⇥ \ ⇥ of orientation-reversing elements of ⇧⇥. If d cannot be chosen as a reflection then � has no
ovals. Otherwise d is conjugate to one of the reflection generators c in the canonical system of generators of ⇧⇥. The
number of ovals #�# is the number of empty period cycles in the group ⇧� = ⇧⇧�1( �!). A formula for #�# is given
in [9] in terms of orders of centralizers:

#�# =
⌅

|C(A,⇧⇧(ci ))|/|⇧⇧(C(⇧⇥, ci ))|, (16)

where ci runs over pairwise nonconjugate canonical reflection generators in ⇧⇥ whose images are conjugate to �, and
C(A, a) denotes the centralizer of the element a in the group A. In [14] (see also [16]) it is proved that the centralizer
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Table 7
Conformal group G and ovals

k G Ovals Conditions k G Ovals Conditions

1 4.4.B2a
00 a, 2, a a ⌥ 0 (2) 3 4.5.B2a

01 2a, a, a a ⌥ 0 (2)

4.4.B2a
01 a, 2, a a ⌥ 0 (2) 4.5.B2a

00 2a, a, a a ⌥ 0 (2)

6.2.Ca
0 2, a, a a ⌥ 0 (2) 6.2.D3a

00 2, a, a a ⌥ 0 (2)

6.2.Ca
1 1, a, a a ⌥ 1 (2) 6.2.D3a

10 1, a, a a ⌥ 1 (2)

6.8.Da
00 a, 2

3 a a ⌥ 0 (6) 6.8.Ca
0 a, 2a None

6.8.Da
01 a, 2

3 a a ⌥ 3 (6) 6 4.5.A2a
0 4a, 2a, a None

2 4.4.A2a
0 2a, 4, a None 4.5.A2a

1 4a, 2a, a None

4.4.A2a
1 2a, 1, a None 6.3.D6a

00 a, 3a a ⌥ 0 (2)

6.3.C2a
⇣ a, a ⇣ ⌥ a (2) 6.3.D6a

11 a, 3a a ⌥ 1 (2)

6.5.D2a
00

1
3 a, a a ⌥ 0 (6) 6.5.C2a

⇣ a, a ⇣ ⌥ a (2)

6.5.D2a
11

1
3 a, a a ⌥ 3 (6) 30 6.6.D6a

00 3a, 3a a ⌥ 0 (2)

10 6.6.C2a
⇣ a, 3a ⇣ ⌥ a (2) 6.6.D6a

11 3a, 3a a ⌥ 1 (2)

of a reflection c in an NEC group ⇥ is isomorphic to Z2 ⇧ Z if the associated period cycle in ⇥ is empty or consists
of odd periods only; otherwise it is isomorphic to Z2 ⇧ (Z ⇤ Z), where ⇤ denotes the free product.

Using these results we obtain the following classification of the centralizers of reflections in an NEC group whose
canonical Fuchsian group is a triangle group. The notation c1 ↵ c2 denotes conjugacy in ⇧⇥.

Lemma 7.1. (a) Let ⇧⇥ be an NEC group with signature (0; +; [�]; (k✏, l ✏, m✏)) and let c0, c1, c2 be the canonical
system of generators of ⇧⇥. Then

(i) for k✏ = 2k + 1, l ✏ = 2l + 1, m✏ = 2m + 1, c0 ↵ c1 ↵ c2 and C(⇧⇥, c0) =  c0! ⇧ ( (c2c0)
m(c1c2)

l(c0c1)
k!),

(ii) for k✏ = 2k, l ✏ = 2l + 1, m✏ = 2m + 1, c0 ↵ c1 ↵ c2 and C(⇧⇥, c0) =  c0! ⇧ ( (c0c1)
k! ⇤

 (c2c0)
m(c1c2)

l(c1c0)
k(c2c1)

l(c0c2)
m!),

(iii) for k✏ = 2k, l ✏ = 2l, m✏ = 2m + 1, c0 ↵ c2 and C(⇧⇥, c0) =  c0! ⇧ ( (c0c1)
k! ⇤  (c2c0)

m(c2c1)
l(c0c2)

m!),
C(⇧⇥, c1) =  c1! ⇧ ( (c0c1)

k! ⇤  (c1c2)
l!),

(iv) for k✏ = 2k, l ✏ = 2l, m✏ = 2m C(⇧⇥, c0) =  c0! ⇧ ( (c0c1)
k! ⇤  (c0c2)

m!), C(⇧⇥, c1) =  c1! ⇧ ( (c0c1)
k! ⇤

 (c1c2)
l!), C(⇧⇥, c2) =  c2! ⇧ ( (c0c2)

m! ⇤  (c1c2)
l!).

(b) Let ⇧⇥ be an NEC group with signature (0; +; [k]; {(m)}) and let x, e, c0, c1 be a canonical system of generators
of ⇧⇥. Then c0 ↵ c1 and

C(⇧⇥, c0) =
�
< c0 > ⇧ < (c0c1)

m/2 > ⇤ < e(c0c1)
m/2e�1 > if m is even,

< c0 > ⇧(< e(c0c1)
(m�1)/2 >) if m is odd.

Theorem 7.2. Let A be the full group of conformal and anticonformal automorphisms of a symmetric exceptional
point X ⇣ M1

g with genus g = ka2 + 1, k ⇣ {1, 2, 3, 6, 10, 30}. Then A acts with NEC signature
(0; +; [�]; (k✏, l ✏, m✏)) and is a semidirect product G⌃ � : � 2!, where G is the full group of conformal automorphisms
of X, listed in Table 7 according to the value of k, � is a symmetry of X, and the action of � on the generators of G
is given in Table 8. A contains two or three conjugacy classes of symmetries with fixed points, the number of whose
ovals is given in Table 7.

Proof. Let A = ⇥̃/� and let ⇧̃ : ⇧⇥ � A be the canonical epimorphism with kernel � . We first show that ⇥̃ cannot
have the signature (0; +; [k]; {(m)}). Suppose it had such a signature, and let x, e, c0, c1 be a canonical system of
generators. Then x1 = x, x2 = c0x�1c0, x3 = c0c1 is a system of canonical generators of the canonical Fuchsian
group ⇥, which has signature [k, k, m]. The full group of conformal automorphisms ⇥/� = G is generated by
g1 = ⇧̃(x1), g2 = ⇧̃(x2), both of order k. Since c0x1c0 = x�1

2 and c0x2c�1
0 = x�1

1 , it follows, for � = ⇧̃(c0), that

�g1� = g�1
2 and �g2� = g�1

1 . (17)
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Table 8
Action of � on G

G �c� � x� � y� �w� �v� �↵�

A⇣ c�1 x↵� y�1 ↵

B⇣⌅ c�1 v�2w�1↵�+⇤ v↵� ↵

C⇣ y�1c�1↵�+⇥ x�1 cyc�1 ↵

D⇣⇣✏ v�1c�1↵�+⇥ v3w�2↵⇥ v2w�1↵�+⇥+µ ↵

Thus g1 ✓� g�1
2 , g2 ✓� g�1

1 is an outer automorphism of G. This is false if G has type 4.5, 6.2 or 6.6. On the other
hand, these are the only cases where the action is full and the signature has the form [k, k, m].

Thus we may assume ⇥̃ has signature (0; +; [�]; (k✏, l ✏, m✏)). Let c0, c1, c2 be the system of canonical generators
of ⇥̃. Then x1 = c0c1, x2 = c1c2 and x3 = c2c0 is a system of canonical generators of the canonical Fuchsian group
⇥. Since c1x1c1 = x�1

1 and c1x2c1 = x�1
2 , it follows that

�g1� = g�1
1 and �g2� = g�1

2 , (18)

for g1 = ⇧̃(x1), g2 = ⇧̃(x2) and � = ⇧̃(c1). Thus A is a semidirect product G ⌃ Z2 =  g1, g2! ⌃  � : � 2!, where � is
a symmetry of X . G is the full group of conformal automorphisms of X , hence it must have one of the actions listed
in bold in Theorem 6.3. G has generators x, y, c such that g1, g2, (g1g2)

�1 are equal to c�2x, c, y�1c, respectively,
if G has a (2, 4, 4)-action, or to c3x, c2 y, c, if G has a (2, 3, 6)-action. (18) induces the action of � on x, y, c given
in Table 8.

A symmetry of X with fixed points is conjugate to one of ⇧̃(c0) = g1� , ⇧̃(c1) = � or ⇧̃(c2) = �g2 and we
shall calculate the number of its ovals using (16). Let �i and �̃i denote the orders of ⇧̃(C(⇥̃, ci )) and C(A,⇧⇧(ci )),
respectively. Any element h ⇣ A has the unique presentation

h = xr ysct� p↵q , (19)

determined by a sequence (r, s, t, p, q) of integers satisfying 0  p, q  1, 0  t < 4 (or 6), 0  s < n and
0  r < d , where d = n for An

⇣ and Cn
⇣ ; d = n/2 for Bn

⇣⌅; and d = n/3 for Dn
⇣⇣✏ . Furthermore, for any integer ⌃

(xr ys)⌃ = xr⌃ ys⌃↵⇤ ⌃(⌃�1)/2. (20)

Assume G has (2, 4, 4)-action. Then we check that any element of C(A, g1� ) is determined by

(r, s, 0, p, q), with x2r =
�
↵s(�+⇤ ) if p = 0,

↵�(s+1)+µ+⇤ s if p = 1;
or

(r, s, 2, p, q), with x2(r+1) =
�
↵s(�+⇤ ) if p = 1,

↵�(s+1)+µ+⇤ s if p = 0.

If G = An
⇣ with even n, we obtain the following possible sequences:

1. (0, s, 0, 0, q), (�1, s, 2, 1, q) : s(⇤ + �) ⌥ 0 (2),

2. (0, s, 0, 1, q), (�1, s, 2, 0, q) : s(⇤ + �) + � + µ ⌥ 0 (2)

3. (n/2, s, 0, 0, q), ( n
2 � 1, s, 2, 1, q) : s(⇤ + �) ⌥ ⇣ (2),

4. (n/2, s, 0, 1, q), ( n
2 � 1, s, 2, 0, q) : s(⇤ + �) + � + µ ⌥ ⇣ (2)

whose total number, given particular values of �, ⇤ , µ and ⇣, is �̃0 = 8n. For G = An
⇣ with n odd and also for

G = Bn
⇣⌅ , we have only the first two possibilities, so that �̃0 = 4n.

C(A, � ) = {xr ys� p↵q : y2s = ↵r�} ⇢ {xr ysc2� p↵q : y2s = ↵r�+µ}, so its elements are determined by the
sequences

1. (r, 0, 0, p, q) : �r ⌥ 0 (2); (r, n
2 , 0, p, q) : �r ⌥ ⇣ (2);

2. (r, 0, 2, p, q) : �r + µ ⌥ 0 (2); (r, n
2 , 2, p, q) : �r + µ ⌥ ⇣ (2).



Author's personal copy

1426 E. Tyszkowska, A. Weaver / Journal of Pure and Applied Algebra 212 (2008) 1415–1426

In all cases but 4.4, �̃1 = �̃0 and in the exceptional case �̃1 = 16n or 8n according to G being An
0 or An

1, Bn
0⌅ ,

respectively.
C(A, �g2) = {xr ys↵q , xr ysc3�↵q : xr�s ys�r = ↵s⇤+�(r+s)} ⇢ {xr ysc2↵q , xr ysc�↵q : xr�s ys�r =

↵s⇤+µ+�(r+s)}. Thus for G = An
⇣ , ṽ2 is the total number of sequences of the form (r, r, 0, 0, q), (r, r, 3, 1, q),

r⇤ ⌥ 0 (2) and (r, r, 2, 0, q), (r, r, 1, 1, q), r⇤ + µ ⌥ 0 (2). According to the particular values of ⇤ and µ, ṽ2 = 4n,
except the case 4.3, where �̃2 = 8n. For G = Bn

⇣⌅ , only half of the listed sequences are possible; however, we
must now include sequences of the form (r, n

2 + r, 0, 0, q), (r, n
2 + r, 3, 1, q) with �n/2 + ⇤ r + ⌅ ⌥ 0 (2) and

(r, n
2 + r, 2, 0, q), (r, n

2 + r, 1, 1, q) with �n/2 + r⇤ + µ + ⌅ ⌥ 0 (2). In all cases, except 4.3, there are 2n additional
sequences and in the exceptional case, 4n or 0 according to ⇣ + ⌅ being even or odd. Consequently,  ̃ = 4n, except
the case 4.3 with ⇣ + ⌅ ⌥ 0 (2), where  ̃ = 8n.

Let k, l, m be integers such that k✏ = 2k, l ✏ = 2l and m✏ = 2m. Then by Lemma 7.1,

�0 = 4 · ord(gk
1(g1g2)

m), �1 = 4 · ord(gk
1 gl

2) and �2 = 4 · ord((g1g2)
m gl

2). (21)

Thus we obtain the following values of ( 0,  1,  2): 4.2 (4, 4, 4); 4.3 (8, 8, 2n · 2⇣+⌅ (2)) for G = Bn
⇣⌅ and (8, 8, 4n)

for G = An
⇣ ; 4.4 (8, 4n · 2⇣, 8); 4.5 (4, 8, 8) and 4.6 (8, 8, 4).

Now we check that h�g2h�1 ⌘= g1� and h�g2h�1 ⌘= � for any element h of the form (19) while � and g1� are
conjugate only for odd n via x (n�1)/2c3 or x (n�1)/2c according to ⇣ = 0 or ⇣ = 1. Thus by (16), there are two or three
conjugacy classes of symmetries with fixed points and the numbers of their ovals are equal to �̃0/�0, �̃1/�1, �̃2/�2 or
�̃0/�0 + �̃1/�1, �̃2/�2 according to n being even or odd.

The arguments are similar in the case that G has a (2, 3, 6) action, and we omit them. �
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