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Definition

A map is an imbedding of a finite connected graph G on a
compact oriented surface X such that the complement X \ G is
a union of 2-cells, called faces.

G may have loops and multiple edges;

a directed edge is called a dart;

sometimes, "free edges" (with only one dart) are allowed:

edge free edge
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Here is a map on the sphere:

1 vertex, 1 edge, 2 faces

V − E + F = 2
=⇒ g = 0
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More generally,

Definition

A dessin d’enfant is an imbedding of a finite connected bipartite
graph G on a compact oriented surface X such that the
complement X \ G is a union of 2-cells.

Note:

Every map is a dessin by insertion of a “white" vertex at the
midpoint of every edge (or at the free end of a free edge).

Then darts correspond to "white-to-black" edges.
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map dessin
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Conversely, a dessin with white valencies ≤ 2 can be made into
a map by

inserting arrows (white-to-black) on each edge;

erasing white vertices.

In this talk, I’ll work almost exclusively with maps.
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Here is a regular map on a torus:

A

C

A A

C

A

B

D

B

8 vertices; 12 edges (24 darts); 4 faces (centered at [A], [B],
[C], [D] with indicated identifications)
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Maps as transitive permutation groups

Let M be a map with n darts. Label the darts with the
symbols 0,1,2,3, . . . ,n − 1 (in some convenient order).

Definition

The monodromy group of M is the subgroup
GM = ⟨x , y⟩ ⊆ Sn, where

x ≡ product of dart cycles at the vertices;

y ≡ product of dart pairs on the edges;

the darts surrounding a vertex acquire a cyclic ordering by the
orientation of the ambient surface.
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In our example,

orientation

0
1

2
3

4

5

18
19

20
21

22

23

6
7

8

15

16

17

9

10

11

12
13

14

the generators of the monodromy group (≤ S24) are

x = (0 1 2) (3 4 5) (6 7 8) . . . (Eight 3-cycles↔ vertices)

y = (2 3) (4 6) . . . (Twelve 2-cycles↔ edges)
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It is not hard to see that, for any map, the monodromy group
⟨x , y⟩ acts transitively on the darts:

connectivity of the underlying graph =⇒ there is an edge-
path e1e2 . . . ek between any two vertices v1 and v2;

a dart δ1 at v1 can be rotated to lie on e1 (using a power of
x);

then reversed to point toward the initial vertex of e2 (using
y);

etc.
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It is also not hard to see that, for any map, the cycles of
(xy)−1 correspond to “walks" around the oriented boundaries of
the map’s faces, keeping the face ‘on the left.’ This is because
(xy)−1 acts on a dart as follows: (i) rotate to the previous edge
in the cyclic order; then, (ii) reverse.

orientation

4

5

18
19

6

8

15

16

9
11

13

14

Starting at dart 5 in our example, we get the cycle
(5 6 9 19 16 14), which describes the boundary of the central
face.
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Starting again at an unused dart, and continuing until all darts
have appeared, we obtain the other cycles of (xy)−1. In our
example,

(xy)−1 = (0 3 13 22 20 11)(1 10 8 23 12 15)

(2 17 18 21 7 4)(5 6 9 19 16 14)

The four 6-cycles correspond to the four hexagonal faces.
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Map equivalence

Definition

Two maps M1, M2 with n darts are equivalent if their
monodromy groups G1,G2 are strongly conjugate in Sn.

This means there exists a single permutation in Sn which
simultaneously conjugates the generators x1, y1 ∈ G1 to the
corresponding generators x2, y2 ∈ G2.
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Remark: there is a weaker equivalence relation on dessins,
defined by conjugacy (but not strong conjugacy) of the
monodromy groups. This is the appropriate equivalence
relation for studying the faithful action of the absolute Galois
group Gal(Q/Q) on dessins.

I won’t pursue that very interesting topic here.
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Map automorphisms

Definition

The automorphism group Aut(M) of a map M with n darts is
the centralizer of its monodromy group in Sn.

(Rationale: automorphisms are self-equivalences of M, i.e.,
permutations in Sn which commute with both monodromy
generators.)

Note: Aut(M) is well-defined on equivalence classes of maps
(conjugate subgroups have conjugate centralizers).
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The type of a map

Definitions

If m is the lcm of the vertex valencies of a map M, and r is the
lcm of the face valencies, we say that M has type (m, r).

M is uniform if all vertices have valence m and all faces
have valence r ;

M is regular if Aut(M) is transitive on the darts.

Lemma: Regular =⇒ Uniform. Proof: transitivity of Aut(M) on
darts implies that all darts have the same local incidence
relations.
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Maps via uniformization

Let Γ = Γ(m, r) be the triangle group with presentation

Γ(m, r) = ⟨ξ1, ξ2, ξ3 | ξm
1 = ξ2

2 = ξr
3 = ξ1ξ2ξ3 = 1⟩.

Geometrically, Γ is the orientation-preserving subgroup of the
group of isometries generated by reflections in the sides of a
triangle contained in U = P1,C, or H.

a

b
c

π

m

π

r

U Iterating the reflections pro-
duces a triangular tessel-
lation of U which contains
the universal map of type
(m, r)
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If M is a map of type (m, r), there is an obvious surjective
homomorphism θ : Γ(m, r)→ GM = ⟨x , y⟩, namely

θ : ξ1 +→ x , ξ2 +→ y , ξ3 +→ (xy)−1.

(θ = id if M is the universal map of type (m, r).)
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Let Gδ,M ≤ GM be the isotropy subgroup of a dart δ ∈M.

Definition

The canonical map subgroup M for a map M of type (m, r) is

M ≡ θ−1(Gδ,M) ≤ Γ(m, r).

Lemma: M is well-defined up to conjugacy in Γ(m, r) (i.e.,
independent of the choice of δ). Proof: by the transitivity of GM

on the darts, all Gδ,M are conjugate.
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Let

M∗ ≡
⋂

γ∈Γ γ
−1Mγ ≤ Γ (M∗ = the core of M in Γ);

|Γ/M| ≡ the set of cosets M in Γ;

D ≡ the set of darts of M.

Lemma (Jones, Singerman, ’78)

The permutation groups (GM,D) and (Γ/M∗, |Γ/M|) are
isomorphic.

That is,
GM × D → D

≃
⏐

# bij
$

# bij
$

#

Γ

M∗
×

∣

∣

∣

∣

Γ

M

∣

∣

∣

∣

→

∣

∣

∣

∣

Γ

M

∣

∣

∣

∣

is commutative.
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Via the canonical map subgroup M ≤ Γ(m, r) we obtain, for
a map M,

XM ≡
U

M
≡ the canonical Riemann surface of M,

where U ≡ C,P1, or H2. Rationale: M ≤ Γ(m, r) acts properly
discontinuously by isometries on U , hence the quotient U/M
inherits a metric which can be completed to a complex
structure.

It follows that

Geometrization of the map

The canonical Riemann surface XM contains the map M
geometrically: edges are geodesics; face-centers and
edge midpoints are well-defined.
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The geometric-algebraic-conformal dictionary

{ subgroups of Γ(m, r) }←→ { maps of type (m, r) }.

M ←→M

Moreover

{

conj. classes
of subgp

}

←→

{

equiv. classes
of maps

}

←→

{

conformal
equiv. classes
of surfaces

}

[M]←→ [M]←→ [XM]
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Furthermore, for M ↔M,

M is torsion-free ⇐⇒ M is uniform;

M is torsion-free and normal ⇐⇒ M is regular;

Aut(M) ≃ NΓ(M)/M.

The last statement implies that map automorphisms are also
conformal automorphisms of XM.

A. Weaver Dessins and curves



The torus example is a regular map of type (6,3):

C

A

C

A A

C

A

B

D

B

Γ(6,3) = Z6 ! (Z⊕ Z), the infinite Euclidean triangle group
acting on C by isometries; M = 2Z⊕ 2Z, the normal,
torsion-free subgroup generated by the squares of the
translations [A] +→ [B], [A] +→ [C]. XM = C/M, and
Aut(XM) ≥ Z6 ! (Z/2Z⊕ Z/2Z), a nonabelian group of order
24.
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Maps via Bely̆i’s theorem

Bely̆i’s theorem

A Riemann surface X is defined over a number field (finite
extension of Q) if and only if there is a meromorphic function

f : X → P1

with at most three critical points.

If f : X → P1 is a Bely̆i function, with critical points in
{0,1,∞} ⊂ P1, then

f−1(
0 1

)

is a dessin lying geometrically on X . {face centers} = f−1(∞).
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Example: the Fermat curve Fn, defined by xn + yn = 1.

Fn has genus (n − 1)(n − 2)/2;

f : (x , y) +→ xn is a Bely̆i function of degree n2;

f−1(
0 1

) is the complete bipartite graph Kn,n.

(This is the minimum-genus imbedding of Kn,n. E.g.: K3,3

imbeds on the torus but not on the sphere, since one crossing
is needed.)

Aut(Fn) = S3 ! (Zn ⊕ Zn) ≥ Zn ⊕ Zn = Aut(Kn,n).
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Recall: a map automorphism is conformal automorphism of the
canonical Riemann surface. As such, it acts properly
discontinuously; in particular, there is a finite set of points with a
non-trivial cyclic isotropy subgroup. These points must be
among the geometric points of the map:

vertices;

edge midpoints;

face centers.

The orbit of an edge midpoint can only be fixed by an
automorphism of order 2. If the map has type (m, r), the orbit of
a face centers can only be fixed by an automorphism whose
order divides r ; a vertex orbit by an automorphism of order
dividing m.

This information (branching data) gives a ‘signature’ for the
action of a cyclic group of (map) automorphisms.
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One-vertex maps

I now specialize to one-vertex maps with k non-free edges.

Motivation: these maps characterize several well-known
families of curves, which are recovered as the corresponding
canonical Riemann surfaces.
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To obtain all equivalence classes of one-vertex maps with
k non-free edges, start with a star map consisting of 2k labelled
darts (‘free edges’), and pair them off in all possible ways.

E.g., with k = 3, the star map

0
1

2

3
4

5

has
1

3!

(

6
2

)(

4
2

)(

2
2

)

= 15 possible pairings.
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Here are three of them:

0
1

2

3
4

5

0
1

2

3
4

5

0
1

2

3
4

5

x = (0 1 2 3 4 5)

y = (0 1)(2 3)(4 5)

yx−1 = (0 4 2) (1) (3) (5)

x = (0 1 2 3 4 5)

y = (0 3)(1 4)(2 5)

yx−1 = (0 2 4) (1 3 5)

x = (0 1 2 3 4 5)

y = (1 2)(3 4)(5 0)

yx−1 = (0) (2) (4) (1 3 5)

(a) (b) (c)
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One-vertex maps are equivalent (by duality) to unicellular
(one-face) maps, which have been extensively studied, e.g.,

Harer and Zagier (’86) enumerated them by means of a
recurrence relation on the genus;

Chapuy (2011) enumerated them by a direct bijective
approach;

Unicellular maps of genus 0 are plane trees, which have a large
literature (Shabat, Voevodsky, Zvonkin, others).

One-vertex maps with k non-free edges can be considered
(again by duality) as side-pairings of regular 2k-gon. – this
point of view makes the underlying Riemann surface explicit.

In my approach, maps are counted according to the size of
their automorphism group.
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Counting one-vertex maps

Let M be a one-vertex map with k ≥ 1 non-free edges. The
monodromy group of M is generated by

x , a 2k-cycle which we fix as (0 1 2 . . . 2k − 1); and

y , a free involution (product of k disjoint transpositions),
which may be chosen in

1

k!

k−1
∏

i=0

(

2k − 2i
2

)

= (2k −1) · (2k−3) · · · · ·3 ·1 = (2k −1)!!

ways.
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Lemma (W)

1 Aut(M) ≤ ⟨x⟩ = ⟨(0 1 2 . . . 2k − 1)⟩.
2 If M is equivalent to M′, with monodromy groups

GM = ⟨x , y⟩ and GM′ = ⟨x , y ′⟩, respectively, then
y ′ = x−syxs for some s, 0 ≤ s ≤ p − 1, where p is a divisor
of 2k such that Aut(M) = Aut(M′) = ⟨xp⟩.
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Proof sketch:

1 An abelian, transitive permutation group is its own
centralizer. Hence Aut(M) ≤ ⟨x⟩.

2 If ⟨x , y⟩ and ⟨x , y ′⟩ are strongly conjugate
(y ̸= y ′ = σ−1yσ, σ ∈ S2k ), and Aut(M) = Aut(M′) = ⟨xp⟩,
then σ ∈ ⟨x⟩ \ ⟨xp⟩. Since xp commutes with y , all possible
y ′ are obtained by taking σ ∈ {x , x2, . . . , xp−1}.
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Prescribing the automorphism group:

Constructing M such that Aut(M) = ⟨xp⟩ is equivalent to
choosing a free involution, y , which commutes with xp, but not
with xs, 0 < s < p.

xp is a product of p cycles of length 2k/p:

(0, p . . . ) (1, p + 1 . . . ) . . . (p − 1, 2p − 1 . . . ).

If y commutes with xp, then conjugation by y

fixes a 2k/p-cycle or transposes two of them;

preserves the internal cyclic order in each 2k/p-cycle.

(A fixed cycle is possible only if 2k/p is even.)
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Lemma (W)

The number of free involutions in S2k commuting with xp is

νp =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

q
∑

m=0

(

d

2

)m p!

m!(p − 2m)!
if d is even

(

d

2

)q p!

q!
if d is odd,

where d = 2k/p, and q = ⌊p
2⌋.

Two special cases:

ν2k = (2k − 1)!!, as expected, since every free involution
commutes with x2k = id;

ν1 = 1, since xk is the unique (free) involution in
CentS2k

(x) = ⟨x⟩.
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A inclusion/exclusion argument yields a formula for νp, the
number of one-vertex maps with k edges whose full
automorphism group is ⟨xp⟩, p a divisor of 2k .

Lemma (W)

The number of free involutions commuting with xp, but not with
xs, 0 < s < p, is

νp = νp +
s

∑

i=1

(−1)iσi ,

where

σ1 =
∑

1≤j≤s

νp/pj
, σ2 =

∑

1≤j<k≤s

νp/pj pk
,

σ3 =
∑

1≤j<k<l≤s

νp/pjpk pl
, σ4 = . . . ,

and pi , i = 1, . . . , s, are the prime divisors of p.
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Finally, combining these two results,

Theorem 2 (W)

νp/p is the number of equivalence classes of one-vertex maps
with k edges whose automorphism group is exactly ⟨xp⟩, p a
divisor of 2k .

Special cases: ν1/1 = 1; and

ν2/2 =

{

k/2 if k is even;

(k − 1)/2 if k is odd.
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These special cases (with maximal and second maximal
automorphism group) were shown previously for k = 3:

0
1

2

3
4

5

0
1

2

3
4

5

0
1

2

3
4

5

x = (0 1 2 3 4 5)

y = (0 1)(2 3)(4 5)

yx−1 = (0 4 2) (1) (3) (5)

x = (0 1 2 3 4 5)

y = (0 3)(1 4)(2 5)

yx−1 = (0 2 4) (1 3 5)

x = (0 1 2 3 4 5)

y = (1 2)(3 4)(5 0)

yx−1 = (0) (2) (4) (1 3 5)

(a) (b) (c)

(a) and (c) are equivalent, with Aut(M) ≃ Z3

(b) is regular with Aut(M) ≃ Z6
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Some classical curves

In the 1890’s, A. Wiman identified the curves (genus g > 1)

w2 = z2g+1 − 1 (type I)

w2 = z(z2g − 1) (type II)

w3 = z4 + 1 (g = 3) (type III).

Their maximal cyclic automorphism groups are, resp.,

(w , z) +→ (−w , ze2πi/2g+1) of order 4g + 2 (type I)

(w , z) +→ (weπi/2g, zeπi/g) of order 4g (type II)

(w , z) +→ (we2πi/3, ze2πi/4) of order 4g = 12 (type III).
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The Wiman curves of type I and II are characterized in terms of
regular one-vertex maps.

Theorem (D. Singerman, 2001)

Let M be a regular, one-vertex map on a surface X of genus
g > 0. Then X is the Wiman curve of type I and M has 2g + 1
edges, or X is the Wiman curve of type II and M has 2g edges.

(The theorem was stated in terms of the dual "unifacial
dessins".)

Note:

For the type I surface, Aut(X ) = Aut(M) = Z4g+2;

For the type II surface, Aut(X ) = SD8g ≥ Aut(M) = Z4g .
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Remark: the natural g = 1 analogues of the Wiman curves of
types I and II are the elliptic curves with moduli e2iπ/3 and i .

Here they are, with their regular one-vertex maps:

A

A

A

B

B

B

01

2

3 4

5

AA

A A

0
1

2
3

(These are the elliptic curves admitting automorphisms with
fixed points of maximal and second-maximal finite order.)
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Remark:

A

A

A

B

B

B

01

2

3 4

5 ≃ 0
1

2

3
4

5

The left side is the "geometrization" of the dessin at right.
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Edge-transitive maps

Goal: a similar characterization, in terms of well-known curves,
of the surfaces underlying one-vertex maps with second
maximal automorphism group.

Definition

A map M is strictly edge-transitive if Aut(M) acts transitively
on the edges, but not on the darts.
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Henceforth M denotes a strictly edge-transitive one-vertex
map with k edges and monodromy group ⟨x , y⟩ ≤ S2k

Then:

Aut(M) = Zk = ⟨x2⟩;

the edge-midpoints are permuted transitively in a k-cycle;

there are at most two distinct face-valences (since a dart
and its "reversal" may have distinct incidence relations).
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Let l1 and l2 denote the two face-valences of M (possibly
l1 = l2);

Write Zk = ({0,1, . . . , k − 1},+) additively (mod k), with
generator 1.

Lemma (W)

The action of Aut(M) = Zk on the canonical Riemann surface
has

signature (0; k , l1, l2) and

generating vector ⟨1, t , k − (t + 1)⟩,

for a unique integer t , 0 < t < k/2, t ̸= (k − 1)/2. Moreover,

l1 = k/(t , k) and l2 = k/(t + 1, k).
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Proof sketch

1 The free involution y commutes with x2 but not with x ,
hence it transposes the two k-cycles comprising x2,

C0 = (0 2 . . . 2k − 2) and C1 = (1 3 . . . 2k − 1),

while preserving their internal cyclic orderings.

2 This is done by pairing symbols in the first cycle with
symbols in the second cycle with a forward shift by t
symbols, 0 ≤ t ≤ k − 1. (If k is odd, t = (k − 1)/2 is
excluded, since in that case, y = xk and the map is
regular.)
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Example (k = 5):

x2 = (0 2 4 6 8) (1 3 5 7 9)

y = (0 1)(2 3) . . . [t = 0] or

y = (0 3)(2 5) . . . [t = 1] or

y ̸= (0 5)(2 7) · · · = xk [t = (k − 1)/2]

y = (0 7)(2 9) . . . [t = 3] or

y = (0 9)(2 1) . . . [t = 4].

A. Weaver Dessins and curves



Proof sketch, cont.

Finding cycle-lengths in (xy)−1: there are at most two different
cycle lengths (l1 and l2).

1 If a cycle contains an odd symbol 2c + 1, then

2c + 1
x−1

+→ 2c
y
+→ 2c + 2t + 1,

which implies a cycle-length l1 where l1 is the minimal
positive integer for which 2l1t ≡ 0 (mod 2k). It follows that
l1 = k/(t , k).

2 A similar argument starting with an even symbol yields
l2 = k/(t + 1, k).

It follows that (xy)−1 is a product of (t , k) cycles of length l1 and
(t + 1, k) cycles of length l2.
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End of proof sketch

1 Finally, ⟨x , y⟩ is strongly conjugate to ⟨x , x−1yx⟩, and
x−1yx is obtained from y by replacing the "shift-parameter"
t by k − (t + 1). Hence, up to map equivalence, we may
assume t < k/2.

2 The lcm of l1 and l2 is k , so (by the "LCM condition" of
Maclachlan/Harvey) a (0; k , l1, l2)-generating vector for Zk

exists, and may be taken in the normal form
⟨1, t , k − (t + 1)⟩.
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Extendability

Certain group actions (with non-finitely maximal
signatures) extend to actions by larger groups. (Bujalance,
Cirré, Conder 1999, 2002).

Extendability of an action depends in part on the form of
the generating vector.

EXAMPLE: A Zk -action with signature (0; k , k ,u) has an
extension to a (non-abelian, non-dihedral) G-action with
signature (0;2, k ,2u) if and only if Zk has an
automorphism α of order 2 such that α(1) ̸= −1. (This is
the case iff k ̸= 2,4,ps,2ps, p an odd prime). Then the
Zk -action extends to an action by G ≃ Z2 !α Zk , iff the
generating vector of the Zk action is
⟨1,α(1), k − (1 + α(1))⟩.
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Let X be the canonical Riemann surface of M.

If the generating vector ⟨1, t , k − (t + 1)⟩ of the Zk action is NOT
extendable (e.g., in particular, if the signature (0; k , l1, l2) is
finitely maximal), then

Aut(M) = Aut(X ) = Zk ;

X has equation wk = zk/l1(z − 1)k/l2 ; and

Aut(X ) is generated by

(w , z) +→ (w ,e2iπ/kz).
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Summary of the main result

If Aut(X ) > Aut(M) (i.e., if the signature (0; k , l1, l2) is not
finitely maximal, and t is such that the generating vector
⟨1, t , k − (t + 1)⟩ of the Zk -action is extendable), then X belongs
to one of several families of well-known ("classical") curves,

the Accola-Maclachlan curves;

the Kulkarni curves;

the Wiman curves (again);

two "nameless" families whose conformal automorphism
groups are metacyclic ≃ Z2 !α Zk or ≃ Z3 !β Zk ;

or X is the Klein quartic, or one of two other exceptional curves
of genus 4 or 10.
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Proof sketch

If Aut(M) > Aut(X ), the signature (0; k , l1, l2) must be one of
the extendable, cyclic-admissible signatures:

Case σ σ′ [Λ(σ′) : Λ(σ)] Conditions
N6 (0; k , k , k) (0;3,3, k) 3 k ≥ 4
N8 (0; k , k ,u) (0;2, k ,2u) 2 u|k , k ≥ 3
T1 (0;7,7,7) (0;2,3,7) 24 -
T4 (0;8,8,4) (0;2,3,8) 12 -
T8 (0;4k ,4k , k) (0;2,3,4k) 6 k ≥ 2
T9 (0;2k ,2k , k) (0;2,4,2k) 4 k ≥ 3

T10 (0;3k , k ,3) (0;2,3,3k) 4 k ≥ 3

Table : Cyclic-admissible signatures (σ) and possible extensions (σ′)

(Singerman, 1972)
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Proof sketch, cont.

In addition, generating vectors must be appropriate for
extension (Bujalance, Cirré, Conder, 1999). On the "classical"
curves, most generating vectors are unique (up to a normal
form), and in most cases, extendable:

Curve Group Signature Gen. Vector

Wiman I Z4g+2 (0;4g + 2,2g + 1,2) ⟨1,2g,2g + 1⟩
Wiman II Z4g (0;4g, 4g, 2) ⟨1,2g − 1,2g⟩
Acc-Maclac Z2g+2 (0;2g + 2,2g + 2,g + 1) ⟨1, 1, 2g⟩
Kulkarni Z2g+2 (0;2g + 2,2g + 2,g + 1) ⟨1,g + 2,g − 1⟩
Wiman III Z12 (0;12, 4 ,3) ⟨1, 3, 8⟩
Klein Z7 (0;7, 7, 7) ⟨1, 2, 4⟩

Table : Maximal cyclic actions on the classical curves
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Theorem (W): If Aut(X ) > Aut(M), then:

1 k = 12, t = 3, and X is the Wiman type III curve;

2 k = 2g + 1, t = 1, and X is the Wiman type I curve;

3 k = 2g + 2, t = 1, and X is the Accola-Maclachlan curve;
4 k = 2g + 1, t = β(1), and Aut(X ) ≃ Z3 !β Zk ; except

if k = 7, t = β(1) = 2, X is the Klein quartic.
5 2g + 2 ≤ k ≤ 4g, t = α(1), and Aut(X ) ≃ Z2 !α Zk ; except

if k = 2g + 2, g ≡ −1 (mod 4), α(1) = g + 2, X is the
Kulkarni curve; or
if k = 12 or 24, g = 4 or 10, α(1) = 7 or 19 (resp.), Aut(X)
contains Z2 !α Zk with index 3.

In case 5, with k = 4g and α(1) = 2g − 1, Z2 !α Zk ≃ SD8g

and X is the Wiman curve of type II.
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Related work

Melekoğlu and Singerman (2008) characterized

{Wiman I, II, Acc-Maclac}, as curves of genus g > 1
admitting double-star maps (2-sheeted covers of a
one-vertex map with ALL free edges on P1);
{Wiman II, Acc-Maclac}, as Platonic M- and
(M − 1)-surfaces (admitting an anticonformal involution with
maximal, resp., second maximal number of fixed ovals).

Singerman (2001) obtained the special case l1 = l2 of our
main Theorem.

Kulkarni (1997) considered "large" cyclic actions with a
fixed point in terms of side-pairings of hyperbolic polygons.
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The paper on which this talk is based is

A. Weaver, Classical curves via one-vertex maps, Geometriae
Dedicata (2013) 163, 141-158.

Also available at:

arXiv:1201.1646v3 [math.NT]

Thanks for your attention!
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