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Abstract One-vertex maps (a type of dessin d’enfant) give a uniform characterization of
certain well-known algebraic curves, including those of Klein, Wiman, Accola–Maclachlan
and Kulkarni. The characterization depends on a new classification of one-vertex (dually,
one-face or unicellular) maps according to the size of the group of map automorphisms. We
use an equivalence relation appropriate for studying the faithful action of the absolute Galois
group on dessins, although we do not pursue that line of inquiry here.
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1 Introduction

Klein’s quartic curve, w3z + z3 + w = 0, admits a tesselation by 336 hyperbolic triangles,
and has PSL2(7) as its full group of conformal automorphisms [21]. It is characterized as
the curve of smallest genus realizing the upper bound 84(g − 1) on the order of a group of
conformal automorphisms of a curve of genus g > 1, given by Hurwitz [13] in 1893. Around
the same time, Wiman characterized the curves w2 = z2g+1 −1 and w2 = z(z2g −1), g > 1,
as the unique curves of genus g admitting cyclic automorphism groups of largest and second-
largest possible order (4g +2 and 4g, respectively) [36]. Two other curve families, identified
much later, share a similar characterization: the Accola–Maclachlan and Kulkarni curves of
genus g realize the sharp lower bound 8g + 8 on the maximum order of an automorphism
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group of a curve of genus g > 1 [1,23,29]. Collectively, we call these curves (together with
one other exceptional curve discovered by Wiman) the classical curves. Further details are
given in Section 5.2.

The triangular tesselation on the Klein quartic is an example of a map, or imbedding of
a finite connected graph on a compact oriented surface, so that the complement is a union
of simply connected faces. Maps are a special type of dessin d’enfant (“child’s drawing”)
as defined by Grothendieck [10]. The topological surface underlying a map has a canonical
complex structure, making it a compact Riemann surface, and hence, a complex algebraic
curve (see, e.g., [35,16]). It turns out that any curve with a map (or dessin) admits a Belyı̆
function (a meromorphic function with at most three critical values) and is therefore, by
Belyı̆’s theorem [2,22,37], defined over an algebraic number field. Conversely, any curve
defined over a number field admits a map which is geometric in the sense that its edges are
geodesics in a canonical complex structure [17]. The absolute Galois group acts faithfully on
maps (or dessins) via its action on the coefficients of the equations defining the curves and
the formulae for the Belyı̆ functions [18].

In this paper, we show that the classical curves can be uniformly characterized as curves
admitting a strictly edge-transitive one-vertex map whose automorphisms are a proper sub-
group of the full group of conformal automorphisms of the curve (see Section 2.1 for def-
initions). The main result is Theorem 6.3. The paper includes three expository sections
(Sections 2, 3 and 5) and two sections containing new results (Sections 4 and 6). Section 2
gives the definition of a map and its automorphisms purely combinatorially in terms of permu-
tation groups. Section 3 constructs the canonical complex structure on a surface with a map,
making the map geometric and its automorphisms conformal. Section 5 discusses conformal
group actions on Riemann surfaces, and the question of whether and how a finite cyclic action
can extend to the action of a larger group. Details on the classical curves, all of which admit
large cyclic automorphism groups, are also given there. In Section 4 we enumerate equiva-
lence classes of one-vertex maps according to the size of the group of map automorphisms,
staying within the purely combinatorical framework. In Section 6 we specialize to regular
and strictly edge-transitive one-vertex maps, whose automorphism groups are, respectively,
maximal and second-maximal (with respect to the number of edges). The classical curves
(and some others) arise when the second-maximal group of map automorphisms is not the
full group of conformal automorphisms of the curve (Theorem 6.3).

One-face or unicellular maps are the duals of one-vertex maps, and have been studied
from various points of view. They were enumerated by means of a recurrence relation on
the number of maps of a given genus [11], and more recently by a different combinatorial
identity [8]. Neither enumeration gives any explicit information about the automorphism
groups, as ours does. In [33], Singerman characterized Riemann surfaces admitting strictly
edge-transitive uniform unicellular dessins, a less general class of maps than the one we focus
on. One-face maps of genus 0 (plane trees) have been extensively studied (see, e.g., [18,25]
and references therein), since they are easily visualized, and the action of the absolute Galois
group, restricted to these simple dessins, remains faithful. The final paragraph of the paper
summarizes the work most closely related to our main result.

The recent book [25] is an excellent general reference on dessins; see also [17]. The first
complete exposition of the theory of maps on surfaces was given by Jones and Singerman
[15], and it remains an excellent reference. The paper [30] describes an analytic approach to
maps using quadratic differentials.
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2 Maps and permutation groups

A map is a finite connected graph embedded on a compact oriented surface so that the
complement is a union of simply connected faces. Loops and multiple edges are allowed.
A directed edge is called a dart, symbolized by an arrowhead on the edge pointing toward
one of the two incident vertices. We usually assume that all edges carry two darts, although
it is possible and sometimes useful to relax this assumption. The set of darts pointing toward
a given vertex receives a counter-clockwise cyclic ordering from the orientation of the ambi-
ent surface. If the map has k edges, and the darts are labelled arbitrarily with the symbols
0, 1, . . . , 2k − 1, the cyclic ordering of the darts at each vertex gives a collection of disjoint
cycles in the symmetric group S2k ; we define x ∈ S2k to be the product of these cycles. We
define y ∈ S2k to be the permutation that interchanges the dart labels on each edge. With the
assumption that all edges carry two darts, y is a free involution. The monodromy group GM
of a map M is the subgroup ⟨x, y⟩ ≤ S2k . By the connectedness of the underlying graph,
GM acts transitively on the darts.

Figure 1 shows a map with k = 24 darts imbedded on the torus of modulus eπ i/3. (The
lower left corner of the parallelogram is 0 ∈ C and the upper left is eπ i/3.) There are 8
vertices, 12 edges, and 4 hexagonal faces. Evidently

x = (0 1 2) (3 4 5) (6 7 8) (9 10 11) (12 13 14) (15 16 17) (18 19 20) (21 22 23),

y = (0 10) (1 17) (2 3) (4 6) (5 13) (7 23) (8 9) (11 19) (12 22) (14 15) (16 18) (20 21)

∈ S24.

We will revisit this example throughout the paper.
For any map with monodromy group ⟨x, y⟩, the cycles of (xy)−1 = yx−1 describe closed

oriented circuits (paths of darts arranged tip-to-tail) which bound the faces of the map. To see
this, start with a dart δ1 pointing toward a given vertex v1. x−1δ1 is the next dart after δ1 in the
clockwise cyclic ordering of the darts pointing toward v1. Let δ2 = yx−1δ1, the “reversal”
of x−1δ1, pointing along the same edge, toward an adjacent vertex, v2. (It may happen that
v2 = v1; in this case the edge carrying δ2 is a loop at v1). Repeat the process staring with δ2,
obtaining δ3 = yx−1δ2, pointing toward an adjacent vertex, v3 (possibly v3 = v2 or = v1).
After finitely many steps, say, n ≥ 1 of them, δn = δ1, that is, we arrive again at the original
dart. At no step does an edge incident with a vertex vi intervene between the edge carrying
δi and the edge carrying δi+1. Thus the circuit δ1, δ2, . . . , δn−1 traverses the boundary of a
unique face of M, namely, the face which is on the left from the point of a view of a traveller

Fig. 1 A map on a torus.
Opposite sides of the
parallelogram are identified
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following the circuit. With this convention, each dart belongs to the boundary of a unique
face. For the map in Fig. 1,

yx−1 = (0 3 13 22 20 11) (1 10 8 23 12 15) (2 17 18 21 7 4) (5 6 9 19 16 14) ∈ S24.

The four cycles specify the boundaries of the hexagonal faces centered at C, A, B, D, respec-
tively.

The topological genus g of the surface underlying a map is easily determined from the
formula for the Euler characteristic, 2g − 2 = |{vertices}| − |{edges}| + |{faces}|, where the
number of vertices is the number of cycles in x , and the number of faces is the number of
cycles in (xy)−1 (1-cycles are counted). The number of edges is the number of 2-cycles in a
free involution on 2k symbols, that is, k.

If there is a permutation in S2k which simultaneously conjugates the monodromy genera-
tors x1, y1 ∈ GM1 of a map M1 to, respectively, the monodromy generators x2, y2 ∈ GM2

of another map M2, we say that the groups GM1 , GM2 are strongly conjugate.

Definition 1 Two maps M1, M2 are equivalent if their monodromy groups are strongly
conjugate.

A map M is (non-trivially) equivalent to itself if and only if there is a permutation in S2k , not
contained in GM, which commutes with both monodromy generators and hence centralizes
GM. Since conjugate subgroups have conjugate centralizers, the automorphism group of a
map,

Aut(M) = CentS2k (GM) = {π ∈ S2k | πg = gπ for all g ∈ GM},
is well-defined (up to isomorphism) on equivalence classes of maps.

The equivalence relation we adopt is appropriate for studying the faithful action of the
absolute Galois group on maps: if maps from distinct equivalence classes are in the same
Galois orbit, their monodromy groups are conjugate but not strongly conjugate (see, e.g.,
[18]). We do not pursue this since we focus on maps on surfaces defined over Q, which are
fixed by the Galois action.

2.1 Regular and edge-transitive maps

Definition 2 A map M has type (n, r), if n is the lcm (least common multiple) of the vertex
valencies and r is the lcm of the face valencies. (The valence of a face is the number of darts
in its bounding circuit.) The map is uniform if all vertices have valence equal to n and all
faces have valence equal to r .

The map M is called regular if Aut(M) acts transitively on the set D of darts. This implies
that the map is uniform, and in particular, that every dart has the same local incidence rela-
tions. The map in Fig. 1 is uniform of type (3, 6). It is also regular: Aut(M) ≃ Z6!(Z2⊕Z2),
where Z2 ⊕ Z2 is the factor group generated by translations carrying A )→ B and A )→ C ,
modulo the normal subgroup generated by their squares. The study of regular maps goes
back at least to Klein and Dyck, and perhaps as far as Kepler (see [7], Chapter 8); for more
recent work see, e.g., [6,19].

A map for which Aut(M) is transitive on edges (but not necessarily on darts) is called
edge-transitive. In this case there are at most two sets of local incidence relations since a
dart might not be equivalent (via an automorphism) to its reversal. Thus there are at most
two distinct face-valences, and at most two distinct vertex valences. We call a map which is
edge-transitive but not regular strictly edge transitive (“half-regular” in [33]).
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3 Uniformization of maps and surfaces

Let G = GM = ⟨x, y⟩ be the monodromy group of a map M of type (n, r). Let # = #(n, r)

be the group with presentation

#(n, r) = ⟨ξ1, ξ2, ξ3 | ξn
1 = ξ2

2 = ξ r
3 = ξ1ξ2ξ3 = 1⟩. (1)

There is an obvious surjective homomorphism θ : # → G, defined by

θ : ξ1 )→ x, ξ2 )→ y, ξ3 )→ (xy)−1. (2)

For δ ∈ D, where D is the set of darts of M, let Gδ denote the isotropy subgroup {g ∈ G |
δg = δ}.
Definition 3 The subgroup M = θ−1(Gδ) ≤ #, is called the canonical map subgroup for
M.

Transitivity of the permutation group (G, D) implies all Gδ are conjugate, so M is well-
defined (up to conjugacy) independent of δ. The core of M in # is the normal subgroup

M∗ =
⋂

γ∈#

γ −1 Mγ .

#/M∗ acts on the set |#/M | of cosets M in #, as follows: M∗γ1 : Mγ )→ Mγ γ1, γ , γ1 ∈ #.

One may verify that the action is well-defined, faithful and transitive.

Lemma 3.1 The permutation groups (G, D) and (#/M∗, |#/M |) are isomorphic.

Proof It suffices to verify that the diagram

G × D → D
i
⏐# b

⏐# b
⏐#

#

M∗ ×
∣∣∣∣
#

M

∣∣∣∣ →
∣∣∣∣
#

M

∣∣∣∣

is commutative, where arrows denote group actions, and the maps i and b are defined as fol-
lows: i : G → #/M∗ maps g )→ M∗θ−1(g); for fixed but arbitrary δ ∈ D, b : D → |#/M |
maps b : δg )→ Mθ−1(g), g ∈ G. To show that i is a well-defined isomorphism, one
first verifies that M∗ = ker(θ); then i is simply the inverse of the canonical isomorphism
#/ker(θ) → G. b is a well-defined bijection according to the following argument, whose
steps are reversible: for g1, g2 ∈ G, δg1 = δg2 ⇐⇒ g2g−1

1 ∈ Gδ ⇐⇒ θ−1(g2g−1
1 ) ⊆

M ⇐⇒ Mθ−1(g2)(θ
−1(g1))

−1 = M ⇐⇒ Mθ−1(g1) = Mθ−1(g2). ⊓1

3.1 Groups with signature

The map subgroup M , and its overgroup #, are examples of groups with signature. These
groups act properly discontinuously by conformal isometries on one of the three simply con-
nected Riemann surfaces: the Riemann sphere (P1), the complex plane (C), or the Poincaré
upper half plane (H). This fact allows us to obtain a canonical complex structure on the
topological surface underlying a map.

A group ' = '(σ ) with signature σ = (h; r1, r2, . . . , rs) has presentation

'(σ ) = ⟨a1, b1, . . . , ah, bh, ξ1, . . . ξs | ξ
r1
1 = · · · = ξ rs

s =
h∏

i=1

a−1
i b−1

i ab
s∏

j=1

ξ j = 1⟩, (3)

123

Author's personal copy



146 Geom Dedicata (2013) 163:141–158

and acts by conformal isometries on P1, C, or H, depending on whether the number

µ(σ ) = 2h − 2 +
s∑

i=1

(
1 − 1

ri

)

is, respectively, negative, 0, or positive. If s > 0, the ri are called the periods of '. All periods
are > 1, and the number of occurrences of a given period is the number of conjugacy classes
of elements of that order in '. Signatures which differ only by a permutation of the periods
determine isomorphic groups and are considered the same. If s = 0,' is a torsion-free
surface group, with signature (h;−), isomorphic to the fundamental group of a surface of
genus h. If ) is any subgroup of finite index n in '(σ ), then ) is also a group with signature
σ ′ and the Riemann–Hurwitz relation states that µ(σ ′) = nµ(σ ).

The orbit space U/', where U denotes P1, C, or H as appropriate, is a compact Rie-
mann surface of genus h with s distinguished points, over which the projection U → U/'

branches. The complex structure on U/' is the one which makes the branched covering map
U → U/' holomorphic. The uniformization theorem of Klein, Poincaré and Koebe states
that every compact surface of genus h can be obtained in this way; moreover one may choose
the uniformizing group ' to be a surface group, so that there are no distinguished points,
and the covering is regular.

When µ(σ ) > 0, which is the case except for finitely many signatures, '(σ ) is a co-
compact Fuchsian group (discrete subgroup of PSL(2, R) containing no parabolic elements)
and 2πµ(σ ) is the hyperbolic area of a fundamental domain for the action of '(σ ) on H.
The normalizer NPSL(2,R)(') of a Fuchsian group ' is itself a Fuchsian group, containing
' with finite index.

Lemma 3.2 The automorphism group of H/' is isomorphic to the finite quotient group
NPSL(2,R)(')/'.

For proofs and further details, see, e.g., [15,16,20].

3.2 The canonical Riemann surface of a map

Let M ≤ # = #(n, r) be the canonical map subgroup of a map M of type (n, r). Since M
is a group with signature, the quotient space U/M is a compact Riemann surface, known as
the canonical Riemann surface for M. The canonical Riemann surface contains the map M
geometrically, that is, the edges of M are geodesics, faces are regular geodesic polygons,
and face-centers are well-defined points. To see this, we pass to the universal map M̂n,r
of type (n, r). M̂n,r is a regular map imbedded on one of the simply connected Riemann
surfaces U = P1, C, or H. It can be constructed as follows. Let T ∈ U be a geodesic triangle
with vertices a, b, c, at which the interior angles are π/n,π/2,π/r respectively (see Fig. 2).
Reflections in the sides of T generate a discrete group of isometries of U whose sense-pre-
serving subgroup (of index 2) is isomorphic to # = #(n, r). The generators ξ1, ξ2, ξ3 ∈ #

correspond to the rotations about a, b, c through angles of, respectively, 2π/n,π, 2π/r ; the
product of the three rotations (considered as a product of six side reflections) is easily seen
to be trivial. Let ê be the geodesic segment ab ∪ ξ2(ab), directed toward the vertex a. The
map with dart set D̂ = {γ (ê) | γ ∈ #} and vertex set V̂ = {γ (a) | γ ∈ #} is the universal
map M̂n,r . Darts meet in sets of n at each vertex and the angle between any two consecutive
edges is 2π/n. The faces are regular geodesic r -gons centered at the #-images of c. The
permutation group (#, D̂) is isomorphic to (#, |#|), the right regular representation of # on
itself. Thus the map is regular and Aut(M̂n,r ) = Aut(#, |#|) = #.
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Fig. 2 Construction of M̂n,r ,
the universal map of type (n, r)

If the number
1
2

− 1
n

− 1
r

is negative, 0, or positive, M̂n,r lies on P1, C, or H, respec-

tively. In the negative case, M̂n,r is a central projection of one of the Platonic solids onto the
circumscribed sphere; in the positive case, it is one of infinitely many regular tesselations of
the hyperbolic plane. In the 0 case, it is a tesselation of C by squares, hexagons, or equilateral
triangles. (Fig. 1 is a portion of M̂3,6.) See, e.g., [7].

The orbifold map U → U/M is a local isometry. Hence the image of D̂ in the canonical
Riemann surface U/M is a set of directed geodesic segments. These segments are in bijection
with the set |#/M | of right cosets of M in #, and # acts by right multiplication on |#/M |. If
γ ∈ # fixes every coset, it belongs to the core M∗ of M in #. Hence the universal map M̂n,r
projects to a map M̂n,r/M on U/M – the promised geometric map – with monodromy group
(#/M∗, |#/M |). With Lemma 3.1, we conclude that every map of type (n, r) is a quotient
of the universal map M̂n,r , by a subgroup M of finite index in the group # = #(n, r), and
may be assumed to lie on its canonical Riemann surface.

The general theory of covering spaces specializes to the category of maps of type (n, r).
Thus, if M1 and M2 are two finite maps with canonical map subgroups M1, M2 ≤ # =
#(n, r), then M1 is a finite covering of M2 if and only if M1 is conjugate within # to a
subgroup of finite index in M2. In particular, if M2 = N#(M1), the normalizer of M1 in #,
then Aut(M1) ≃ M2/M1. This leads to the following Lemma.

Lemma 3.3 Let M be a map of type (n, r) with canonical map subgroup M ≤ # = #(n, r).
Then Aut(M) ≤ Aut(X), where X = U/M is the canonical Riemann surface for M, and
Aut(X) is the group of conformal automorphisms of X.

Proof Aut(M) is isomorphic to N#(M)/M . Since #, M and N#(M) are discrete subgroups
of Isom+(U), the sense-preserving isometries of U ,

N#(M)

M
≤ NIsom+(U)(M)

M
= Aut( U/M).

The equality on the right is a consequence of Lemma 3.2 if U = H. ⊓1

In the local geometry of the canonical Riemann surface, an automorphism α ∈ Aut(M)

which preserves a face acts as a rotation about the fixed face-center through an angle 2π/r ′,
where r ′ is a divisor of the face-valence (and a divisor of r if the type is (n, r)). Similarly, if
α preserves an edge while transposing its darts, the geometric action is a rotation through an
angle π about the fixed edge midpoint. These are consequences of corresponding facts about
the universal map M̂n,r , together with the fact that the covering projection U → U/M is a
local isometry. See [15].
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(a) (b) (c)

Fig. 3 One-vertex maps with three edges. a and c are equivalent and strictly edge-transitive; b is regular

4 One-vertex maps with automorphisms

We now enumerate one-vertex maps, up to equivalence, according to the size of their auto-
morphism groups.

Let M be a map with one vertex and k edges. The monodromy generator x ∈ S2k is a
2k-cycle specifying the counterclockwise cyclic ordering of the darts (arbitrarily labelled
0, 1, 2, . . . , 2k − 1) around the vertex. The other monodromy generator, y ∈ S2k , is a free
involution whose k disjoint transpositions specify how the darts pair off into edges. Since all
2k-cycles are conjugate in S2k , we may assume, up to map equivalence, that x is the standard
2k-cycle

(0 1 2 . . . 2k − 1). (4)

Then M is determined by the free involution y, which can be chosen in

k−1∏

i=0

(
2k − 2i

2

)
= (2k − 1) · (2k − 3) · · · 3 · 1 = (2k − 1)!!

ways. Figure 3 shows three of the 15 one-vertex maps with three edges.
The number of equivalence classes of one-vertex maps with k edges is smaller than

(2k − 1)!!, since some of the maps have non-trivial automorphisms.

Theorem 4.1 Let M be a one-vertex map with k edges and monodromy group GM = ⟨x, y⟩,
where x is a 2k-cycle and and y is a free involution. Then: (i) Aut(M) ≤ ⟨x⟩ ≃ Z2k . (ii) If
Aut(M) = ⟨x p⟩, p a divisor of 2k, the monodromy groups ⟨x, ys⟩, where ys = x−s yxs, s =
0, . . . , p − 1, determine distinct but equivalent maps. Conversely, if M is equivalent to M′

with monodromy group GM′ = ⟨x, y′⟩, then Aut(M) ≃ Aut(M′) = ⟨x p⟩ for some divisor
p of 2k, and y′ = ys for some s, 0 ≤ s ≤ p − 1.

Proof The centralizer of GM is contained in the centralizer of each of its generators; in par-
ticular, it is contained in the centralizer of ⟨x⟩. The latter is an abelian transitive permutation
group which, by a well-known result in the theory of permutation groups, is its own central-
izer (see, e.g., [34], Section 10.3). It follows that Aut(M) ≤ ⟨x⟩ ≃ Z2k . Now suppose p is a
divisor of 2k and Aut(M) = ⟨x p⟩. The permutations xs, s = 1, . . . , p − 1 do not commute
with y (otherwise they would be automorphisms of M), hence there are p distinct free involu-
tions ys = x−s yxs, s = 0, 1, . . . , p−1, belonging to strongly conjugate monodromy groups
⟨x, ys⟩, determining distinct but equivalent maps. Conversely, if M is equivalent to M′, the
monodromy groups GM = ⟨x, y⟩ and GM′ = ⟨x, y′⟩ are strongly conjugate, with conjugate
centralizers and hence isomorphic automorphism groups. Since both automorphism groups
are contained in ⟨x⟩, Aut(M) = Aut(M′) = ⟨x p⟩ for some divisor p of 2k. By strong
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conjugacy of GM and GM′ , there exists a permutation σ ∈ S2k , such that σ−1xσ = x and
σ−1 yσ = y′. In particular σ ∈ CentS2k (⟨x⟩) = ⟨x⟩. If y′ ̸= y, σ ∈ ⟨x⟩ \ ⟨x p⟩. Thus σ = xd ,
for d a non-multiple of p. If d > p, σ−1 yσ = σ ′−1 yσ ′, where σ ′ = xd−p , since x p com-
mutes with y. It follows that all possible y′ are obtained by taking σ ∈ {x, x2, . . . , x p−1}. ⊓1

4.1 Free involutions with prescribed commutation property

If x ∈ S2k is a 2k-cycle, and p is a divisor of 2k, then x p is a product of p cycles of length
d = 2k/p. Assuming x is the standard 2k-cycle (4), the cycles are

C j = ( j j + p . . . j + 2k − p), j = 0, 1, . . . , p − 1. (5)

Let cy : S2k → S2k denote conjugation by a free involution y ∈ S2k . If y commutes with x p ,
then ⟨cy⟩ ≃ Z2 block-permutes the p d-cycles at (5), while preserving their internal cyclic
orderings. The permutation cy either preserves a given cycle or interchanges two distinct
cycles in a block-orbit of length 2. Suppose cy preserves the cycle C j , as well as its internal
cyclic order. Then for some positive integer t and for every symbol a ∈ C j , cy(a) = a + tp
(mod 2k). Because cy has order 2, 2tp ≡ 0 (mod 2k) or, equivalently, tp ≡ 0 (mod k),
which has the unique (mod k) solution t = k/p = d/2, implying that d is even. On the other
hand, if cy : S2k → S2k interchanges two cycles Ci and C j , i < j , preserving their internal
cyclic orders, there exists an integer t ≥ 0 such that every symbol i + ap ∈ Ci , is mapped
to cy(i + ap) = j + (a + t)p, and, reciprocally, every symbol j + bp ∈ C j , is mapped to
cy( j + bp) = (i + (b − t)p (all symbols are reduced mod 2k). The shift parameter t is not
uniquely determined, but may take any value 0, 1, . . . , d − 1. There is no requirement that d
be even. It follows that a free involution commuting with x p is uniquely determined by the
following data:

• the set of cycles C j fixed by cy (empty if d = 2k/p is odd);
• the (possibly empty) set of cycle pairs [Ci , C j ], i < j , transposed by cy ;
• for each transposed pair, a choice of shift parameter t, 0 ≤ t ≤ d − 1.

Let q = ⌊p/2⌋, the greatest integer less than or equal to p/2. If cy transposes m ≤ q cycle
pairs, those pairs can be chosen, up to reordering, in

1
m!

(
p
2

)(
p − 2

2

)
· · ·

(
p − (2m − 2)

2

)
=

(
1
2

)m p!
m!(p − 2m)!

ways. Each pair requires a choice of shift parameter from among 0, 1, 2, . . . , d − 1, so
the number of choices is multiplied by dm . If d is odd, there are no unpaired cycles and
m = p/2 = q , an integer since p is even. If d is even, unpaired cycles are possible so the
number of choices is a sum over all possible m. This yields the following Lemma.

Lemma 4.2 Let ν p be the number of free involutions in S2k commuting with x p, where x is
a 2k-cycle and p a divisor of 2k. Then

ν p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q∑

m=0

(
d
2

)m p!
m!(p − 2m)! if d is even

(
d
2

)q p!
q! if d is odd,

where d = 2k/p, and q = ⌊ p
2 ⌋.

The Lemma yields ν2k = (2k − 1)!!, as it should, since every free involution commutes
with x2k = {1}, and ν1 = 1, since xk is the unique (free) involution in CentS2k (x) = ⟨x⟩.
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4.2 One-vertex maps with prescribed automorphism

If y commutes with x p , but no lower power of x , then ⟨x p⟩ is the full automorphism group
of a one-vertex map whose monodromy group is strongly conjugate to ⟨x, y⟩.
Theorem 4.3 Let νp be the number of one-vertex maps with k edges whose full automor-
phism group is ⟨x p⟩, p a divisor of 2k. Then νp = ν p + ∑s

i=1(−1)iσi , where

σ1 =
∑

1≤ j≤s

ν p/p j , σ2 =
∑

1≤ j<k≤s

ν p/p j pk , σ3 =
∑

1≤ j<k<l≤s

ν p/p j pk pl , . . . ,

and pi , i = 1, . . . , s, are the prime divisors of p.

Proof Let p′ be any proper divisor of p. If p is a prime, p′ = 1 and ν1 = 1. Hence νp =
ν p − 1 = ν p − σ1, proving the theorem in this case. If p is not prime, p = p′ pϵ1

1 pϵ2
2 . . . pϵs

s ,
where at least one of the ϵi > 0. Reordering the pi if necessary we may assume that the
first t ≤ s of the ϵi > 0, while the remaining s − t are 0. Hence, without loss of generality,
p = p′ pϵ1

1 pϵ2
2 . . . pϵt

t , with all ϵi > 0, i = 1, 2, . . . , t . Each map with automorphism group
⟨x p′ ⟩ contributes 1 to ν p; it suffices to show that such a map contributes −1 to

∑s
i=1(−1)iσi ,

so that its total contribution to the formula in the theorem is 0. We use a standard inclu-
sion/exclusion argument. If t = 1, the map contributes −1 to −σ1 and 0 to the remaining
summands. If t = 2, the map contributes −2 to −σ1, 1 to σ2, and 0 to the remaining sum-
mands. In general, for arbitrary t ≤ s, the contribution is −( t

1 ) to −σ1, (
t
2 ) to σ2, etc. It

follows from the binomial theorem that the total contribution is

1 +
t∑

i=1

(−1)i
(

t
i

)
= (1 − 1)t = 0.

Thus the formula counts only those maps whose automorphism group is equal to ⟨x p⟩. ⊓1
Corollary 4.4 The number of equivalence classes of one-vertex maps with k edges whose
full automorphism group is ⟨x p⟩, p a divisor of 2k, is νp/p.

Proof Theorem 4.1(ii) combined with Theorem 4.3. ⊓1
In particular, the number of equivalence classes of strictly edge-transitive, one-vertex

maps with k edges is

ν2/2 =
{

k/2 if k is even;
(k − 1)/2 if k is odd.

(6)

Since ν1 = 1, there is a unique regular one-vertex map with k edges. Figure 3 illustrates the
case k = 3.

5 Conformal automorphisms of Riemann surfaces

A finite group G acts by conformal automorphisms on a compact Riemann surface X of
genus g if and only if there is a group '(σ ), with signature σ , containing a normal surface
subgroup Mg , with signature (g;−), and a surface-kernel epimorphism ρ : ' → G making
the sequence of homomorphisms

{1} → Mg ↪→ '(σ )
ρ→ G → {1} (7)
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exact (see [26], or [16], Theorem 5.9.5). The surface X is conformally equivalent to U/Mg ,
where U is the universal covering space. G is isomorphic to '(σ )/Mg , and the Riemann–
Hurwitz relation requires 2g − 2 = |G|µ(σ ). We say that G acts in genus g with signature
σ .

Definition 4 A σ -generating vector for a finite group G is an ordered set of elements, one
for each generator of '(σ ), which generate G and fulfill the corresponding relations in '(σ )

(and possible other relations).

A σ -generating vector for G determines a surface kernel epimorphism ρ satisfying (7), and
conversely. Hence

Lemma 5.1 G acts in genus g with signature σ if and only if G has a σ -generating vector.

Let σ = (0; n, m, r), so that '(σ ) is a triangle group , and let G = Zn . By a general
theorem of Maclachlan [28] (see also Harvey [12]), an abelian group of order n has an
(0; n, m, r)-generating vector if an only if lcm(m, r) = n. We establish a normal form for
such a generating vector. Let Zn = ⟨x | xn = 1⟩, and let ⟨xa, xb, xc⟩ be a (0; n, m, r)-
generating vector. Then a + b + c ≡ 0 (mod n) since the product of the elements must be
the identity. For the elements to have the appropriate orders, n/(a, n) = n, n/(b, n) = m,
and n/(c, n) = r , where ( , ) denotes the gcd (greatest common divisor) of two integers.
If ρ in (7) is post-composed with an automorphism of G, an equivalent generating vector,
specifying a topologically equivalent action, is obtained (see [3], Prop. 2.2). Hence we may
assume a = 1. Writing Zn additively, with the generator 1, we define

Definition 5 The normal form for an (0; n, m, r)-generating vector for Zn =
⟨{0, 1, . . . , n},+⟩ is

⟨ 1, b, c ⟩, 1 + b + c ≡ 0 (mod n), n/(b, n) = m, n/(c, n) = r. (8)

5.1 Finite maximality and extendability

Definition 6 A group with signature is finitely maximal if it is not a subgroup of finite index
in any other group with signature.

If '(σ ) in (7) is finitely maximal, then '(σ )/Mg is necessarily the full automorphism group
of X = U/Mg .

Finite maximality is not generally a property of the abstract group '(σ ), but depends
on the particular imbedding of the group in Isom+(U). However, there are some pairs of
signatures (σ, σ ′) such that every imbedding of a group '(σ ) with signature σ in Isom+(U)

extends to an imbedding of an overgroup '(σ ′). Signature pairs of this type were considered
by Greenberg in [9], and fully classified by Singerman [32]. For each such pair, there arises
a delicate problem in finite group theory: for each subgroup-overgroup pair (G, G ′), with
[G ′ : G] = ['(σ ′) : '(σ )], and such that G ′ has a σ ′-generating vector and G has a σ -gener-
ating vector, determine conditions under which the G ′-action is an extension of the G-action
on the same surface. Equivalently, determine conditions under which the surface-kernel epi-
morphism ρ in (7) is the restriction of a surface-kernel epimorphism (with the same kernel)
ρ′ : '(σ ′) → G ′. This problem is treated comprehensively in the papers [5] and [4]. The
signature pairs (σ, σ ′) where both signatures are triangular and the first is cyclic-admissable
– that is, '(σ ) admits surface-kernel epimorphisms onto a cyclic G – are given in Table 1,
which uses the case nomenclature established in [5]. The index ['(σ ′) : '(σ )] = [G ′ : G]
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Table 1 Cyclic-admissible signatures (σ ) and possible extensions (σ ′)

Case σ σ ′ ['(σ ′) : '(σ )] Conditions

N6 (0; k, k, k) (0; 3, 3, k) 3 k ≥ 4

N8 (0; k, k, u) (0; 2, k, 2u) 2 u|k, k ≥ 3

T1 (0; 7, 7, 7) (0; 2, 3, 7) 24 –

T4 (0; 8, 8, 4) (0; 2, 3, 8) 12 –

T8 (0; 4k, 4k, k) (0; 2, 3, 4k) 6 k ≥ 2

T9 (0; 2k, 2k, k) (0; 2, 4, 2k) 4 k ≥ 3

T10 (0; 3k, k, 3) (0; 2, 3, 3k) 4 k ≥ 3

is easily computed using the Riemann–Hurwitz relation and the fact that Mg is a subgroup
of both groups. In cases N6 and N8 in the table, '(σ ) is a normal subgroup of '(σ ′). We
give complete descriptions of these cases below. The necessary numerical conditions on k
are implicit but not stated in [5].

Lemma 5.2 (Case N6) A Zk action with signature (0; k, k, k) has an extension of type N6
to a G action with signature (0; 3, 3, k) only if 32 " k and p ≡ 1 (mod 3) for every prime
divisor p ̸= 3 of k. The numerical conditions imply that Zk has an automorphism β of order
3, acting non-trivially on each p-Sylow subgroup, p ̸= 3. Then G ≃ Z3 !β Zk and the
normal form of the generating vector for the Zk action is ⟨1,β(1), β2(1)⟩.

Proof Since Zk is a normal subgroup, G has the semi-direct product structure Z3 !β Zk ,
where β is a (possibly trivial) automorphism of Zk of order a divisor of 3. In addition, any non-
trivial subgroup of G, being a homomorphic image of the group with signature (0; 3, 3, k),
is generated by at most two elements of order 3. Let pG denote a p-Sylow subgroup of G.
3G has the structure Z3 !β Z3s , s ≥ 0, but since it is generated by a most two elements of
order 3, s ≤ 1. Hence 32 " k. For a prime divisor p ̸= 3 of k,pG is cyclic, and β induces
an automorphism βp on pG. The subgroup Z3 !βp (pG) ≤ G is generated by two elements
of order 3 only if βp is a non-trivial automorphism of order 3. This implies that p ≡ 1
(mod 3), and yields the stated necessary conditions on k. If 1 is the additive generator of pG,
then the element 1 + βp(1) + β2

p(1) ∈ pG is fixed by βp and hence must be the identity
(equivalently, 1+βp(1)+β2

p(1) ≡ 0 (mod |pG|)). Now, Zk is the direct sum of its p-Sylow
subgroups; hence β = ⊕pβp , where the sum is over the prime divisors of k. (βp is trivial if
p = 3.) It follows that ⟨β⟩ is a subgroup of order 3 in the automorphism group of Zk which
acts non-trivially on each p-Sylow subgroup, p ̸= 3. Taking 1 as the additive generator of
Zk , we have 1 + β(1) + β2(1) ≡ 0 (mod k). Thus ⟨1,β(1), β2(1)⟩ is the normal form of a
(0; k, k, k) generating vector for a Zk action extendable to a G action. ⊓1

Lemma 5.3 (Case N8) A Zk action with signature (0; k, k, u) has an extension of type N8
to a G action with signature (0; 2, k, 2u) if and only if either

1. k is odd, G ≃ Z2k, u = k, and the normal form of the Zk generating vector is ⟨1, 1, k−2⟩;
2. k is even, G = Z2 ⊕ Zk, u = k/2, and the normal form of the Zk generating vector is

⟨1, 1, k − 2⟩;
3. k ̸= 2, 4, ps, 2ps , (p an odd prime), G ≃ Z2 !α Zk , (non-abelian, non-dihedral), where

α is an automorphism of Zk of order 2,α(1) ̸= −1, and the normal form of the Zk
generating vector is ⟨1,α(1), k − (1 + α(1))⟩.
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Proof The group G has the semi-direct product structure Z2 !α Zk , where α is a (possibly
trivial) automorphism of Zk of order a divisor of 2. If G is non-abelian, α is non-trivial and
the generating vector is of the form ⟨1,α(1), c⟩. α(1) ̸= −1, for then c = 0, and u = 1. Such
an α exists if and only if k ̸= 2, 4, ps, 2ps , (p an odd prime) [14]. G has the (non-dihedral)
semi-direct product structure Z2 !α Zk . If G is abelian, α is trivial, and by Maclalchlan’s
lcm condition [28], either u = k and G ≃ Z2k , or u = k/2 and G = Z2 ⊕ Zk . ⊓1

5.2 Cyclic actions on the classical curves

The classical curves admit automorphism groups which are “large” with respect to the genus
g; in particular, the maximal cyclic subgroups of automorphisms have order at least ≥ 2g+1.
The paper [24] gives a precise definition of “large,” and has interesting points of contact with
our work. (See, e.g., Section 3 of [24], where cyclic group actions with a fixed point are
described in terms of side-pairings of hyperbolic polygons; being one-face maps, the poly-
gons can be viewed as the duals of one-vertex maps in which side-pairings correspond to
dart-pairings on edges.)

The Wiman curves of genus g > 1 are

w2 = z2g+1 − 1 (type I)

w2 = z(z2g − 1) (type II)

w3 = z4 + 1 (g = 3) (type III).

Their maximal cyclic automorphism groups are

(w, z) )→ (−w, ze2π i/2g+1) of order 4g + 2 (type I)

(w, z) )→ (weπ i/2g, zeπ i/g) of order 4g (type II)

(w, z) )→ (we2π i/3, ze2π i/4) of order 4g = 12 (type III).

Signatures for the cyclic actions can be deduced by analyzing the ramifications of the branched
covering projection Pz : (w, z) )→ z. For example, for the Wiman curve of type I, Pz :
(w, z) )→ z has degree 4g +2 with ramification of order 2g +1 over z = 0, order 4g +2 over
z = ∞, and order 2 over the (2g+1)st roots of unity. The unique normal form of a generating
vector for Z4g+2 with a (0; 4g+2, 2g+1, 2) signature is easily seen to be ⟨1, 2g, 2g+1⟩. By
similar arguments one sees that the signatures of the Type II and III actions are (0; 4g, 4g, 2)

and (0; 12, 4, 3), respectively. Corresponding generating vectors, unique in normal form, are
given in Table 2. The type I signature is finitely maximal (it does not appear in Table 1), so
Z4g+2 is the full automorphism group of the type I curve. The type II and type III signatures
are not: the cyclic actions extend to larger conformal actions according to cases N8 and T10
of Table 1, with k = 4g, k = 4, respectively. The full1 automorphism groups are

SD8g = ⟨a, b | a4g = b2 = 1, b−1ab = a2g−1⟩ acting with signature (0; 2, 4g, 4)

(type II)

H48 = ⟨Kulkarni’s group of order 48⟩ acting with signature (0; 2, 3, 12)

(type III).

A presentation of H48 is given in [24].

1 If g = 2, SD16 extends to an action of GL2(Z3), of order 48, with signature (0; 2, 3, 8) (Case T11 in [5]).
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Table 2 Maximal cyclic actions on the classical curves

Curve Group Signature Gen. vector

Wiman type I Z4g+2 (0; 4g + 2, 2g + 1, 2) ⟨1, 2g, 2g + 1⟩
Wiman type II Z4g (0; 4g, 4g, 2) ⟨1, 2g − 1, 2g⟩
Accola–Maclachlan Z2g+2 (0; 2g + 2, 2g + 2, g + 1) ⟨1, 1, 2g⟩
Kulkarni Z2g+2 (0; 2g + 2, 2g + 2, g + 1) ⟨1, g + 2, g − 1⟩
Wiman type III Z12 (0; 12, 4 , 3) ⟨1, 3, 8⟩
Klein Z7 (0; 7, 7, 7) ⟨1, 2, 4⟩

In the late 1960’s Accola [1] and Maclachlan [29] independently showed that the genus
g curve with equation w2 = z2g+2 − 1 has full automorphism group

AM8g+8 = ⟨a, b | a2g+2 = b4 = 1, (ab)2 = [a, b2] = 1⟩,
of order 8g + 8, and that, for infinitely many g ≥ 2, this curve realizes the maximal order of
an automorphism group of a surface of genus g. (A. M. Macbeath had shown in 1961 [27]
that the Hurwitz bound 84(g − 1) is not attained for infinite sequences of genera.) Thus, for
every g ≥ 2, there exists a surface Xg of genus g such that |Aut(Xg)| ≥ 8g + 8, and the
bound is sharp for infinitely many g. If g ≡ −1 (mod 4), there is a second surface of genus
g, identified by Kulkarni [23], having full automorphism group of order 8g + 8, acting with
the same signature as AM8g+8. The full2 automorphism group of the Kulkarni surface is

K8g+8 = ⟨a, b | a2g+2 = b4 = 1, (ab)2 = 1, b2ab2 = ag+2⟩.
Both AM8g+8 and K8g+8 act with signature (0; 2, 4, 2g +2) and contain the cyclic subgroup
⟨a | a2g+2 = 1⟩ of index 4. The distinct normal forms of the generating vectors for the cyclic
actions, given in Table 2, show that the Accola–Maclachlan and Kulkarni curves, when they
exist in the same genus, are distinct. The index 4 extensions to AM8g+8 and K8g+8 realize
Case T9 in Table 1.

The Klein quartic is uniquely determined by the normal form of the generating vector for
its maximal cyclic group of automorphisms (Z7) given in Table 2. This action has an index
3 extension (type N6) to the group Z3 !β Z7,β(1) = 2, and a further extension (type T1) to
PSL2(7). It is worth noting that there is another Z7 action in genus 3, with the same signature
(0; 7, 7, 7) as the one determining the Klein quartic. This action has generating vector ⟨1, 1, 5⟩
and determines the Wiman curve of type I via an N8 extension, with u = k = 2g + 1 = 7.

6 The classical curves and edge-transitive one-vertex maps

We have seen that a one-vertex map M with k edges has Aut(M) = ⟨x p⟩ ≤ Z2k = ⟨x⟩,
where p is a divisor of 2k. If M is edge-transitive, Aut(M) must have at least k elements,
hence p = 1 or p = 2. If p = 1, M is regular. If p = 2, M is strictly edge transitive, i.e.,
edge transitive but not regular.

The following theorem was proved in [33] (stated in terms of unifacial dessins), and
completely characterizes regular one-vertex maps.

2 If g = 3, K32 extends to an action by a group of order 96 acting with signature (0; 2, 3, 8) (Case T11 in
[5]).
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Fig. 4 Regular one-vertex maps
in genus 1

Theorem 6.1 Let M be a regular, one-vertex map on a surface X of genus g > 0. Then X
is the Wiman curve of type I and M has 2g + 1 edges, or X is the Wiman curve of type II
and M has 2g edges.

The regular one-vertex maps in genus 1 are shown in Fig. 4. The type I map on the left
has two faces, centered at A and B, and is the geometrization of the map in Fig. 3 (b). It lies
on the elliptic curve of modulus e2π i/3. The type II map on the right has one face, centered at
A, and lies on the elliptic curve of modulus i . These curves are the natural genus 1 analogues
of the Wiman curves of type I, II , characterized (up to conformal equivalence) by admitting
an automorphism of order greater than 2 (6, 4, respectively) which fix a point. Note that the
map in Fig. 1 also lies on the type I elliptic curve.

6.1 Strictly edge-transitive one-vertex maps

If M is strictly edge-transitive with k edges, the edge midpoints are permuted regularly in a
k-cycle (with trivial isotropy subgroup) and the face centers fall into two orbits, each having
isotropy subgroup of order equal to the corresponding face-valence. By Wiman’s bound on
the order of an automorphism (or an automorphism with a fixed point if g = 1), k ≤ 4g + 2.
k = 4g + 1 is not possible, by the Riemann–Hurwitz relation.

Theorem 6.2 Let M be strictly edge-transitive one-vertex map on a surface X of genus
g ≥ 1. The action of Aut(M) ≃ Zk has signature and generating vector

Zk (0; k, l1, l2) ⟨1, t, k − (t + 1)⟩, l1 = k/(t, k), l2 = k/(t + 1, k), (9)

for some t, 0 < t < k/2, t ̸= (k − 1)/2. The notation ( , ) indicates the gcd (greatest
common divisor) of two integers.

Proof In the monodromy group GM = ⟨x, y⟩, the free involution y commutes with x2 but
not with x , hence it is obtained from a pairing of the two k-cycles

C0 = (0 2 . . . 2k − 2) and C1 = (1 3 . . . 2k − 1)

with a shift parameter t, 0 ≤ t ≤ k −1 (cf. Section 4.1). If k is odd, t = (k −1)/2 is excluded,
since in that case, y = xk and the map would be regular. The permutation (xy)−1 = yx−1

consists of cycles of at most two different lengths. If a cycle of yx−1 contains an odd symbol
2c + 1, then

2c + 1
x−1

)→ 2c
y)→ 2c + 2t + 1,

which implies that the cycle has length l1 where l1 is the minimal positive integer for which
2l1t ≡ 0 (mod 2k). It follows that l1 = k/(t, k). Similarly, if a cycle contains an even
symbol 2c, then

2c
x−1

)→ 2c − 1
y)→ 2c − 2 − 2t,
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which implies that the cycle has length l2, where l2 is the minimal positive integer such that
−l2(2+2t) ≡ 0 (mod 2k). This yields l2 = k/(t + 1, k). It follows that (xy)−1 is a product
of (t, k) cycles of length l1 and (t + 1, k) cycles of length l2. The single vertex of M is fixed
by Aut(M). The edge midpoints are permuted regularly in a k-cycle, and the centers of the
two face types are permuted in orbits of lengths (t, k) and (t +1, k), with isotropy subgroups
of orders l1 and l2, respectively. It follows that Aut(M) acts with signature (0; k, l1, l2). By
Theorem 4.1, ⟨x, y⟩ is strongly conjugate to ⟨x, y1⟩, where y1 = x−1 yx . Moreover y1 is
obtained from y by replacing the shift parameter t with the shift parameter k − (t + 1). We
note that since (t + 1, k) = (k − (t + 1), k), the signature of the Zk action is not changed if
t is replaced by k − (t + 1). It follows that up to map equivalence, we may assume t < k/2.
If t = 0, the signature reduces to (0; k, k) which places the map (and the Zk action) on the
Riemann sphere. The lcm of l1 and l2 is k, so a (k, l1, l2)-generating vector for Zk exists and
may be taken in the normal form ⟨1, t, k − (t + 1)⟩ (cf. (8)). ⊓1

In most cases, if a curve X of genus g > 1 has a strictly edge-transitive, one-vertex map
M, then Aut( M) = Aut( X). The exceptions are characterized in our final theorem, below.
If AutM = Aut( X), an equation for X is wk = zk/ l1(z − 1)k/ l2 , where Aut(M) ≃ Zk is
generated by (w, z) )→ (w, e2π i/k z).

Theorem 6.3 Let M be a strictly edge-transitive one-vertex map with k edges, where
Aut( M) = Zk has signature and generating vector (9). Let X be the canonical Riemann
surface of genus g > 1. If Aut( X) > Aut( M), then

1. k = 12, t = 3, and X is the Wiman type III curve;
2. k = 2g + 1, t = 1, and X is the Wiman type I curve;
3. k = 2g + 2, t = 1, and X is the Accola–Maclachlan curve;
4. k = 2g + 1, t = β(1), and Aut(X) ≃ Z3 !β Zk as in Lemma 5.2; except

• if k = 7, t = β(1) = 2, X is the Klein quartic.

5. 2g + 2 ≤ k ≤ 4g, t = α(1), and Aut(X) ≃ Z2 !α Zk as in Lemma 5.3; except

• if k = 2g + 2, g ≡ −1 (mod 4), α(1) = g + 2, X is the Kulkarni curve; or
• if k = 12 or 24, g = 4 or 10,α(1) = 7 or 19 (resp.), Aut(X) contains Z2 !α Zk with

index 3.

In case 5, with k = 4g and α(1) = 2g − 1, Z2 !α Zk ≃ SD8g and X is the Wiman curve of
type II.

Proof If Aut( X) > Aut( M), the signature in (9) must coincide with one of the cyclic-
admissible signatures σ in Table 1. For an extension of type N6, by the Riemann–Hurwitz
relation, k = 2g + 1; if g = 3, the N6 extension is subsumed by the T1 extension, which
yields the Klein quartic. For an extension of type N8, by the Riemann–Hurwitz relation,
k = 2g(u/u − 1). For an abelian extension, there are two possibilities: (i) u = k/2 (equiva-
lently, k = 2g + 2) and t = 1; or (ii) u = k (equivalently, k = 2g + 1) and t = 1. In the first
case we obtain the Zk action (see Table 2) which determines the Accola–Maclachlan curve.
(The N8 extension to Z2 ⊕ Z2g+2 is subsumed by the T9 extension.) In the second case, we
obtain the cyclic action which determines the Wiman curve of type I, extending to Z4g+2.
For a non-abelian extension of type N8, u ≤ k/2 (otherwise the extension would be cyclic
of order 2k), hence 2g + 2 ≤ k ≤ 4g. Both the lower and upper bounds, which occur when
l2 = k/2, l2 = 2, respectively, satisfy the necessary conditions on k given in Lemma 5.3
for a nonabelian, non-dihedral extension to Z2 !α Zk . If g ≡ −1 (mod 4), α(1) = g + 2
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determines an automorphism of Z2g+2 of order 2 since (g + 2)2 ≡ g2 ≡ 1 (mod 2g + 2).
Taking k = 2g + 2, we have k − (1 + α(1)) = g − 1 which has has order g + 1 (mod k)
since (g + 1)(g − 1) = (2g + 2)(g − 1)/2 ≡ 0 (mod k). This yields the Zk action which
determines the Kulkarni surface. (The N8 extension is subsumed by the T9 extension, or by
the T4 extension if g = 3). In the last two exceptional cases (k = 12, 24) the N8 extension is
subsumed by the T8 extension. The Wiman type III curve arises from the T10 extension. ⊓1

Subsets of the curves mentioned in Theorem 6.3 have been characterized in ways related
to our characterization. Melekoğlu and Singerman ([31], Section 6) characterized the Wiman
curves of type I and II, and the Accola–Maclachlan curves (all of which are hyperelliptic) as
the unique curves of genus g > 1 admitting double-star maps. These are two-sheeted covers
(via the hyperelliptic involution) of a one-vertex map on the sphere having only free edges
(carrying a single dart). We note that double-star maps are the “exceptional” ribbon graphs
of [30] (Definition 1.9). Melekoğlu and Singerman ([31], Theorems 8.2 and 8.3) also char-
acterized the Accola–Maclachlan and Wiman type II curves as the unique Platonic M- and
(M −1)-surfaces, respectively. These are curves of genus g > 1 admitting an anti-conformal
involution with the maximal and second-maximal (g + 1, resp., g) number of fixed sim-
ple closed curves. Singerman ([33], Theorem 6.2) classified the surfaces admitting uniform
strictly edge-transitive one-vertex maps; this is the special case l1 = l2 in our Theorem 6.2.
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