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Abstract. In the space of moduli of surfaces of genus g, the locus of surfaces with
automorphisms is a complicated set which can be stratified according to topological con-
jugacy of the full automorphism groups of the surfaces. The strata are non-disjoint, and
the intersections can contain surfaces admitting isomorphic subgroups of automorphisms
which are topologically but not conformally equivalent. The paper is expository, with
some explicit examples at the end.

1. Introduction

The space of moduli of compact Riemann surfaces of a given genus g has a large
singular set corresponding to surfaces with automorphisms. A precise geometric
understanding of the singular set requires a good deal of background material. The
purpose of this expository paper is to present this material in a coherent and reason-
ably self-contained way. There are several possible approaches. Ours is essentially
algebraic, involving Fuchsian groups whenever possible. A second purpose of the
paper is to show how the distinction between topological and conformal conjugacy of
group actions on surfaces is reflected in the branch locus in Teichmüller space. The
main background references for the paper are [3,27,28]. Some general references for
later sections are [6,31,16].

The contents of the paper are as follows. In Section 2. we define Fuchsian groups
and their proper discontinuous action on the upper half plane. In Section 3. we define
the Teichmüller space and modular group associated to a given Fuchsian group.
In Section 4. we investigate the interaction between a quasiconformal map of the
upper half plane and a given Fuchsian group, and prove, in Section 5., that every
isomorphism between Fuchsian groups can be realized as conjugation by a quasicon-
formal map of the upper half plane. We sketch a proof of the existence and uniqueness
of Teichmüller maps realizing such isomorphisms. This leads to the definition, in
Section 6., of the Teichmüller metric on the Teichmüller space of a Fuchsian group.
In Section 7. we show that the fixed point set of a finite subgroup of the modular
group is itself a Teichmüller space, embedded in the ambient Teichmüller space on
which the modular group acts. We state a version of the Nielsen-realization theorem,
that every finite subgroup of the modular group has a non-empty fixed point set.
In Section 8., we define the relative modular groups, which are set-wise stabilizers of
fixed point sets of finite subgroups of the modular group, and the quotient groups of
the relative modular groups which act effectively. Next we define the relative Riemann
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spaces parametrizing surfaces admitting a given symmetry group. In Section 9. we
distinguish topological from conformal conjugacy of group actions on surfaces. This
provides a precise way of describing the branch locus in Teichmüller space in terms
of embedded Teichmüller spaces of smaller dimension. The branch locus corresponds
to the singular set in the space of moduli. The stratification of this space is described
in Section 10.. The intersections of the strata echo the corresponding relationships
among the embedded spaces in Teichmüller space. We finish with some explicit
examples in Section 11..

2. Uniformization and Fuchsian groups

According to the uniformization theorem (Klein, Poincaré, Koebe), a simply con-
nected Riemann surface, up to conformal equivalence, is one of the following:

1. the complex plane;
2. the Riemann sphere;
3. the upper half plane U = {z ∈ C|Im(z) > 0}.

Each of these has a canonical complete metric of constant curvature. On U
the metric is Poincarè’s hyperbolic metric |dz|/Im(z), of constant curvature −1.
A consequence of the uniformization theorem is that every Riemann surface can be
represented as a quotient X̃/!, where X̃ is one of the three simply connected surfaces,
and ! is a discrete group of orientation-preserving isometries, acting discontinuously
on X̃ . This means that every point x ∈ X̃ is contained in an open set which does not
meet any of its γ -translates, γ ∈ !, unless γ is the identity.

A slight weakening of the notion of discontinuity permits a covering theory of
orbifolds (surfaces with cone points), analogous to the uniformization theorem for
surfaces.

Definition 1. A group of G of homeomorphisms of a topological space S acts properly
discontinuously if

1. every s ∈ S is contained in an open set V ⊂ S such that, for g ∈ G, gV ∩ V ̸= ∅
implies gs = s;

2. the stabilizer of a point is finite.

Definition 2. A group G acts effectively on a set S if the (normal) subgroup H =
{g ∈ G|gs = s for all s ∈ S} is trivial.

If ! acts effectively and properly discontinuously on X̃ , the points in X̃ with non-
trivial stabilizers form a discrete set D ⊂ X̃ . The quotient map X̃ → X̃/!, restricted
to X̃ − D, is a covering which transfers the metric and conformal structures from
X̃ − D to the quotient (X̃ − D)/!, a surface punctured at a discrete set of points. The
filled-in punctures become the cone points, and the metric and conformal structures
extend in a canonical way to the resulting closed orbifold.

When X̃ = U , ! is a discrete subgroup of the real Möbius group

L =
{

z (→ az + b
cz + d

, a, b, c, d ∈ R, ad − bc = 1
}

≃ P SL(2, R),
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called a Fuchsian group (see [21], Chapter 5 or [22]). The boundary ∂U = R ∪ {∞}
contains the limit set of accumulation points of !-orbits of points z ∈ U . A Fuchsian
group is elementary if the limit set is finite. Here we consider only non-elementary
Fuchsian groups of the first kind, for which the limit set is all of ∂U .

An element of L is elliptic if it has a single fixed point in U , parabolic if it has a
single fixed point in ∂U , and hyperbolic if it has two fixed points in ∂U . Parabolic and
hyperbolic elements have infinite order. An elliptic element can have infinite order,
but, if it is contained in a Fuchsian group, by discreteness, its order must be finite.
A hyperbolic element t ∈ L stabilizes a geodesic axis lt ⊂ U . For z ∈ lt the hyper-
bolic distance between z and t z is an invariant of t called the translation length. The
limits as n → ±∞ of tn z are the endpoints of lt on ∂U . They are called the attracting
(+) and repelling (−) fixed points of t .

Lemma 1. Non-identity elements in L commute if and only if they have the same fixed
point set.

Proof. [21], Theorem 5.2.4. One need only examine the centralizers of representatives
of conjugacy classes. Parabolic elements are conjugate to z (→ z ± 1, and the centra-
lizer of these elements is {z (→ z + k|k ∈ R}. All such elements fix {∞}. Hyperbolic
elements are conjugate to z (→ λz, λ > 0, λ ̸= 1, with centralizer {z (→ µz|µ > 0};
the fixed point sets are {0, ∞}. After a standard conformal transformation from U to
the interior of the unit disk, all elliptic elements are conjugate to rotations w (→ eiθw,
θ ∈ R, which are centralized by {w (→ eiφw|0 ≤ φ < 2π}. All such elements fix the
origin. ✷

Corollary 2. The centralizer in L, and, in particular, the center, of a non-elementary
Fuchsian group is trivial.

Proof. The existence of a non-trivial element of L which commutes with every
element of the group would imply that every element has the same (finite) fixed point
set, making the group elementary. ✷

A finitely generated Fuchsian group has a fundamental polygon in U ∪ ∂U with
finitely many sides [18]. If none of the sides is contained in ∂U , the polygon has finite
hyperbolic area. If none of the vertices is contained in ∂U , ! contains no parabolic
elements, and the quotient U/! is compact. A Fuchsian group ! of this type is called
co-compact, and it has the following canonical presentation:

! =
〈
a1, b1, . . . , ag, bg, e1, . . . , en|eν1

1 = eν2
2 = · · · = eνn

n = 1,

g∏

i=1

[ai , bi ]
n∏

j=1

e j = 1

〉

, (1)

where the generators {ei} are elliptic and the other generators are hyperbolic. The
(n + 1)-tuple

(g; ν1, ν2, . . . , νn) (2)
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is called the signature of !, and it determines ! uniquely if we assume, as we shall,
that ν1 ≤ ν2 ≤ · · · ≤ νn. The νi are called the periods of !, and they form a com-
plete set of maximal orders of elliptic elements in !, one for each conjugacy class.
A signature of the form (2) is said to have type (g, n).

The presentation (1) defines a Fuchsian group if and only if the number

χ(!) = χ(g; ν1, ν2, . . . , νn) = 2π

⎧
⎨

⎩2g − 2 +
n∑

j=1

(
1 − 1

ν j

)⎫
⎬

⎭ , (3)

is positive. χ(!) is the hyperbolic area of a fundamental polygon for ! acting on U .
If χ(!) > 0, then χ(!) ≥ π/21, with equality if and only if ! is the group with
signature (0; 2, 3, 7).

Lemma 3 (The Riemann-Hurwitz relation). If ! ≤ !∗ are co-compact Fuchsian
groups, the ratio χ(!)/χ(!∗) is finite and equal to the index [!∗ : !].

Proof. See, e.g., [18], or [11], Theorem 1.2.7. ✷

For co-compact !, the compact quotient U/! is an orbifold of type (g, n), that is, a
compact Riemann surface of genus g with n distinguished points, over which the quo-
tient map U → U/!, elsewhere a covering map, is ramified. All orbifolds with a finite
number of distinguished points, except those of type (g, n) = (0, 0), (0, 1), (0, 2), and
(1, 0), arise as quotients of co-compact Fuchsian groups acting on U . If ! has presen-
tation (1), the order of the isotropy subgroup of a point lying over the i th distinguished
point is νi .

The normalizer of a subgroup G in a group H is the subgroup NH (G) = {h ∈
H |hGh−1 = G}.
Lemma 4. The normalizer NL(!) of a co-compact Fuchsian group ! is a co-compact
Fuchsian group, and the index [NL(!) : !] is finite.

Proof. If NL(!) is not discrete it contains an infinite sequence of distinct elements
{δi} tending to the identity. For all γ ∈ !, there exists a positive integer m such that
δiγ δ−1

i = γ , i ≥ m, otherwise {δiγ δ−1
i } would be an infinite sequence of distinct

elements of ! tending to γ , contradicting the discreteness of !. Thus, by Lemma 1,
δi , i ≥ m, has the same fixed point set as γ . Since ! is nonabelian there exists γ ′ ∈
! which does not commute with γ . Repeating the previous argument, there exists
m ′ such that δi , i ≥ m ′, has the same fixed point set as γ ′. But then γ , γ ′ have
the same fixed point set and hence commute. This contradiction proves that NL(!)
is discrete. By the Riemann-Hurwitz relation, π/21 ≤ χ(NL(!)) ≤ χ(!) < ∞
whence the index [NL(!) : !] < ∞. Since a fundamental domain for NL(!) is
contained in a fundamental domain for !, which has no sides or vertices in ∂U , NL(!)
is co-compact. ✷

A co-compact Fuchsian group without elliptic elements (i.e., torsion-free) is called
a surface group. If the signature is of type (g, 0), the group is isomorphic to the fun-
damental group of a compact surface of genus g. We shall use + (+g) to denote a
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surface group (of genus g). By the uniformization theorem, every compact surface of
genus g is conformally equivalent to a quotient surface U/+′, where +′ is the image
of an injective homomorphism r : +g → L.

Theorem 5. Surface groups + and +′ of genus g > 1 are conjugate in L if and only
if the surfaces U/+ and U/+′ are conformally equivalent.

Proof. If t−1+t = +′ for some t ∈ L, then t induces the conformal map +z (→
+′t−1z between U/+ and U/+′, where +z denotes the +-orbit of z ∈ U . Conversely,
a conformal map c : U/+ → U/+′ lifts to a conformal map c̃ of the universal
covering space U , i.e., an element c̃ ∈ L. Since c̃(+z) = +′(c̃z), it follows that
c̃+gc̃−1 = +′

g . ✷

A subgroup G of a group H is called characteristic if all automorphisms of H
preserve G. In particular, G is normal in H .

Theorem 6 (Bundgaard, Nielsen, Fox). A co-compact Fuchsian group contains a
surface group as a characteristic subgroup of finite index.

Proof. [8,12]. The proof is based on two lemmas: (i) there exists a normal subgroup of
finite index which contains no non-trivial power of any given elliptic element; (ii) the
intersection of a finite number of subgroups of finite index is a subgroup of finite
index. Since there are only finitely many conjugacy classes of elliptic elements, the
theorem follows. ✷

3. Teichmüller spaces of Fuchsian groups

Henceforth ! denotes a co-compact Fuchsian group with presentation (1).
Let R(!) be the set of all injective homomorphisms r : ! → L such that the image

r(!) is Fuchsian. R(!) is topologized as a subspace of the product of 2g + n copies
of L, by assigning to r ∈ R(!) the point

(r(a1), r(b1), . . . , r(ag), r(bg), r(e1), . . . r(en)) ∈ L2g+n .

The identity id! : ! ↪→ L may be taken as a base point in R(!). Aut(L) acts on
R(!) by post-composition; since Aut(L) ≃ L ≃ Inn(L), the action is by conjugation.
r1, r2 ∈ R(!) are called equivalent if their images are conjugate within L. Equiva-
lence classes [r] are the points in T (!), the Teichmüller space of !, which takes the
quotient topology from R(!).

Theorem 7 (Greenberg [17]). Let ! and !∗ be co-compact Fuchsian groups.
An injective homomorphism i : ! → !∗ induces a homeomorphism ī : T (!∗) →
T (!) onto a closed subspace, defined by

ī : [r] (→ [r ◦ i]. (4)

Proof. We sketch the proof given in [27], Theorem 7.11. Let δ1, δ2, . . . , δh be a
canonical finite set of generators of !, as in (1). Let γ1, γ2, . . . , γk ∈ !∗ be a com-
plete set of coset representatives of i(!) in !∗. k < ∞ since, by the Riemann-Hurwitz
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relation, the inclusion i : ! → !∗ has finite index. It can be arranged that all the γi
are hyperbolic elements ([27], Lemma 4.8). !∗ is generated by the set

{i(δ1), . . . , i(δh), γ1, . . . , γk},

and r ∈ R(!∗) corresponds to the point

(r ◦ i(δ1), . . . , r ◦ i(δh), r(γ1), . . . , r(γk)) ∈ Lh+k .

For each j = 1, . . . , k, there exists a smallest n j < ∞ such that γ
n j
j ∈ i(!). Let

γ
n j
j = i(e j ), e j ∈ !. Then r(γ j ) is the unique n j th root of r ◦ i(e j ). Call this element

l j ∈ L. Uniqueness of l j follows from uniqueness of roots in infinite cyclic groups:
r◦i(e j ) belongs to the infinite cyclic group generated by the hyperbolic element r(γ j ).
Then r ◦ i ∈ R(!) corresponds to the point

(r ◦ i(δ1), . . . , r ◦ i(δh), l1, . . . , lk) ∈ Lh+k,

and r is uniquely and continuously recoverable from r ◦ i . Hence i induces an
embedding of R(!∗) into R(!), whose image is a closed subset. As r varies in its
Teichmüller class, so does r ◦ i (the images are both conjugated by an element of L).
Thus the embedding descends to an embedding of the quotient Teichmüller spaces,
with respect to the quotient topology. ✷

Let Aut+(!) be the group of automorphisms of ! which are both type- and
orientation-preserving. Type-preserving automorphisms carry elliptic elements to
elliptic elements, parabolic elements to parabolic elements, etc. (For co-compact
Fuchsian groups, which contain only finite-order elliptic elements and infinite-order
hyperbolic elements, all automorphisms are type-preserving.) Orientation-preserving
automorphisms are induced by automorphisms of the free group on the generators of
(1) which carry the final relator in (1) to a conjugate of itself but not of its inverse.
Inner automorphisms are type- and orientation-preserving. Let Inn(!) ⊆ Aut+(!) be
the normal subgroup of inner automorphisms. α ∈ Aut+(!) induces a homeomor-
phism of T (!) defined by

[r] (→ [r ◦ α] (5)

If α ∈ Inn(!), there exists δ ∈ ! such that α(γ ) = δ−1γ δ. Then r(α(!)) =
c−1r(!)c, where c = r(δ) ∈ L, so that [r ◦ α] = [r]. Thus the effective action is by
the Teichmüller modular group of !

Mod(!) = {[α]} ≃ Aut+(!)

Inn(!)
.

[α] denotes the class in Aut+(!)/Inn(!) induced by α.

Theorem 8. The action Mod(!) × T (!) → T (!) defined by

([α], [r]) (→ [r ◦ α]

is properly discontinuous.
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Proof. This was proved by Kravetz [24] in the case where ! is surface group.
We follow the proof in [28], Theorem 7, which assumes Kravetz′ result.

By Theorem 6, ! contains a surface group + as a characteristic subgroup of finite
index. The inclusion i : + ↪→ ! induces the embedding ī : T (!) ↪→ T (+) defined
by (4). Let [r] ∈ T (!), and suppose [r ◦ i] ∈ V ⊂ T (+), where V is an open set
satisfying property 1 of Definition 1 for the action of Mod(+) on T (+) (Kravetz′

result is assumed here). Let W = V ∩ ī(T (!)) = ī−1(V ). W is an open set in
T (!) which is non-empty, since it contains [r]. Since + is characteristic in !, for
every β ∈ Aut+(!) there exists a unique α ∈ Aut+(+) such that β ◦ i = i ◦ α.
If β ∈ Aut+(!) is such that [β](W ) ∩ W ̸= ∅, then [α](V ) ∩ V ̸= ∅ and by property
1 for Mod(+) on T (+), [α] fixes [r ◦ i], that is, [r ◦ i ◦ α] = [r ◦ i]. Equivalently,
[r ◦ β ◦ i] = [r ◦ i] which implies [r ◦ β] = [r]. Thus W ⊂ T (!) is an open set
containing [r] which satisfies property 1 for Mod(!) acting on T (!).

Property 2 of Definition 1 for Mod(!) acting on T (!) follows from the next
theorem and Lemma 4. ✷

Theorem 9. The stabilizer of a point [r] ∈ T (!) is isomorphic to the (finite) subgroup
NL(r(!))/r(!) of Mod(!).

Proof. If [α] ∈ Mod(!) fixes [r], then [r ◦ α] = [r] and there exists t ∈ L such
that, for all γ ∈ !, r ◦ α(γ ) = tr(γ )t−1. It follows that t ∈ NL(r(!)). If t ∈ r(!),
α ∈ Inn(!) and hence [α] is the identity in Mod(!). Thus the stabilizer of [r] is
isomorphic to a subgroup of NL(r(!))/r(!). On the other hand, if t ∈ NL(r(!)), the
map βt : r(γ ) (→ tr(γ )t−1 is a type- and orientation-preserving automorphism of
r(!), whence αt = r−1 ◦ βt ◦ r is a type- and orientation-preserving automorphism
of !. αt is inner if and only if t ∈ r(!). This establishes the isomorphism. ✷

4. Quasiconformal maps; compatibility

A homeomorphism w : U → U is called quasiconformal, or more precisely,
k-quasiconformal, if there exists k < 1 such that |wz̄/wz | ≤ k almost everywhere.
Partial derivatives wz and wz̄ exist in the sense of distribution theory ([3], §2), and
obey the usual chain rules

(u ◦ v)z = (uv ◦ v)vz + (u v̄ ◦ v)(v̄)z; (6)

(u ◦ v)z̄ = (uv ◦ v)v z̄ + (u v̄ ◦ v)(v̄)z̄ . (7)

The expression wz̄/wz is called a Beltrami differential. A complex measurable func-
tion µ(z) defined on U determines a Beltrami equation

wz̄ = µ(z)wz, (8)

in which µ(z) is the Beltrami coefficient. If |µ(z)| < 1, the Jacobian (1 − µµ̄)|wz|2
of w is positive, and hence w is orientation-preserving.
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Lemma 10.

(i) If µ(z) is a Beltrami coefficient with |µ(z)| ≤ k < 1 almost everywhere, and w is
a solution of (8), then w is k-quasiconformal; conversely, every k-quasiconformal
self-homeomorphism of U is the solution of (8) for some Beltrami coefficient
µ(z), |µ(z)| ≤ k < 1 almost everywhere.

(ii) If w is a solution of (8), and c ∈ L, then w1 = c◦w is also a solution; conversely,
if w, w1 are both solutions of (8) then there exists c ∈ L such that w1 = c ◦ w.

Proof. [3], §4 E, §4 B. ✷

Lemma 11. A quasiconformal self-homeomorphism of U has a unique extension to a
self- homeomorphism of Ū = U ∪ ∂U.

Proof. [3], §3 E. ✷

There is a definition of quasiconformality due to Ahlfors and Pfluger [1] which
makes no reference to differentiability (distributional or otherwise): a conformal
image of {(x, y) ∈ R2|0 ≤ x ≤ m, 0 ≤ y ≤ 1} is called a topological rectangle R
with modulus m = m(R). By the Riemann mapping theorem, a continuous image of
a topological rectangle is a topological rectangle (with a possibly different modulus).
A homeomorphism w : U → U is k-quasiconformal if, for every topological rectan-
gle R,

m(w(R))

m(R)
≤ (1 + k)

(1 − k)
. (9)

Lemma 12. The composition of a k1-quasiconformal map with a k2-quasiconformal
map is k-quasiconformal, where

1 + k
1 − k

= 1 + k1

1 − k1
· 1 + k2

1 − k2
.

Proof. An immediate consequence of (9). ✷

For quasiconformal w, let k(w) < 1 be the smallest k such that w is k-quasi-
conformal. The maximal dilatation of w is

K (w) = 1 + k(w)

1 − k(w)
.

We have the following consequences of the preceding definitions and lemmas. Let w1,
w2, w : U → U be quasiconformal maps, and let c : U → U be conformal. Then

K (c) = 1; (10)

K (w1 ◦ w2) ≤ K (w1)K (w2); (11)

K (w) = K (w−1); (12)

K (w ◦ c) = K (c ◦ w) = K (w). (13)

Let ! be a Fuchsian group. A Beltrami coefficient µ(z) is !-compatible if it trans-
forms according to the rule

µ(γ (z))) = µ(z)γ ′(z)/γ ′(z) for all γ ∈ !. (14)
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A holomorphic function φ(z) defined on U is called a !-2-form (automorphic form
of weight 2 for !) if it transforms according to the rule

φ(γ (z))) = φ(z)/γ ′(z)2 for all γ ∈ !. (15)

A !-2-form induces an integrable quadratic differential on the quotient surface
U/!, holomorphic except possibly for simple poles or removable singularities at the
orbifold points. All holomorphic quadratic differentials on U/! arise in this way.

Lemma 13.

(i) If φ is a !-2-form, then

µ(z) = kφ(z)/|φ(z)|, 0 ≤ k < 1, (16)

is a !-compatible Beltrami coefficient. Partially conversely,
(ii) If φ(z) is a holomorphic function such that (16) is a !-compatible Beltrami coef-

ficient, then, up to multiplication by a real character χ : ! → (R+, ·), φ is a
!-2-form.

Proof. [27], Lemma 5.18. (i) is a consequence of the chain rules. (ii) A real character
is a homomorphism of a group into the multiplicative group of positive reals. If φ(z)
has modulus r(z) > 0 and argument θ(z) ∈ R, then µ(z) = k exp(−iθ(z)), and, since
µ is !-compatible, for all γ ∈ !,

−θ(γ z) − arg γ ′(z) = −θ(z) + arg γ ′(z).

This implies that the number χ(γ ) = φ(γ (z))γ ′(z)2/φ(z) is real (arg(χ(γ ) = 0).
In addition χ(γ ) = r(γ (z))|γ ′(z)|2/r(z) > 0. The homomorphism property χ(γ1γ2)
= χ(γ1)χ(γ2) is easily verified. ✷

Theorem 14. Let !1 be a subgroup of finite index in !. Let φ be a !1-2-form. Then
(16) is !-compatible if and only if φ is a !-2-form.

Proof. [27], Theorem 5.20. By Lemma 13, (16) is !1-compatible; if it is also
!-compatible, then there is a real character χ : ! → (R+, ·) such that

φ(γ (z)) = χ(γ ) · φ(z)/γ ′(z)2 for all γ ∈ !.

For some finite t , γ t ∈ !1 since the index [! : !1] is finite. It follows that χ(γ t ) =
(χ(γ ))t = 1. This implies χ(γ ) = 1, since (R+, ·) has no non-trivial element of finite
order. Hence φ is a !-2-form. Conversely, if φ is a !-2-form, then (16) is !-compatible
by Lemma 13. ✷

5. Geometrical realizations

r ∈ R(!) has a geometrical realization if there is an orientation-preserving homeo-
morphism w : U → U such that, for all γ ∈ !, r(γ ) = wγw−1. It is a remark-
able fact, not at all obvious, that every r ∈ R(!) has a quasiconformal geometrical
realization.

Let /(r, !), r ∈ R(!), denote the set of quasiconformal geometrical realiza-
tions of r .
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Lemma 15. If w ∈ /(r, !), then the Beltrami differential wz̄/wz is !-compatible.
Conversely, if µ(z) is a !-compatible Beltrami coefficient, and w is a solution of (8),
there exists r ∈ R(!) such that w ∈ /(r, !).

Proof. [27], Theorem 5.14. Let w ∈ /(r, !). Then w!w−1 = r(!) and for γ ∈ !,
z ∈ U , w(γ z) = r(γ )w(z). A computation using the chain rules (6), and the fact
that γ and r(γ ) are conformal, shows that wz̄/wz satisfies (14). Conversely, if µ(z)
is a !-compatible Beltrami differential, and w is a solution of (8), then w ◦ γ is also
a solution and hence by statement (ii) of Lemma 10, there exists c ∈ L such that
w ◦ γ = c ◦ w, or equivalently, wγw−1 = c ∈ L. Thus one can define r : ! → L by
r(γ ) = wγw−1 for all γ ∈ !. Clearly, w ∈ /(r, !). ✷

The next theorem is a consequence of a well-known result of Nielsen [29]: every
automorphism of the fundamental group of compact surface (= +g) is induced by
a self-homemorphism of the surface. The homeomorphism can be taken to be piece-
wise linear [37]; as such it lifts to a quasiconformal homeomorphism of U . One can
therefore restate Nielsen’s result as follows: every automorphism α ∈ Aut+(+g) has
a quasiconformal geometrical realization.

Let + = +g .

Theorem 16. /(r, +) is non-empty for all r ∈ R(+).

Proof. Let r ∈ R(+). There exists a piecewise linear homeomorphism h : U/+ →
U/r(+) which lifts to a quasiconformal homeomorphism h̃ : U → U satisfying
h{+z} = r(+)h̃(z), z ∈ U . h̃ induces the isomorphism r0 : + → r(+) defined by
λ (→ h̃λh̃−1, λ ∈ +. α = r−1 ◦ r0 ∈ Aut+(+), so, by Nielsen’s result, there is a
quasiconformal map w realizing α. Hence r = r0 ◦ α−1 is geometrically realized by
the quasiconformal map h̃ ◦ w−1. ✷

Definition 3. w : U → U is a Teichmüller mapping for ! if it is either conformal or
quasiconformal with Beltrami differential

wz̄

wz
= k

φ(z)
|φ(z)| , 0 < k < 1,

where φ is a !-2-form.

Theorem 17 (Uniqueness of Teichmüller mappings). Let w0 ∈ /(r, +), r ∈ R(+),
be a Teichmüller mapping for +. If w ∈ /(r, +), w ̸= w0, then K (w0) < K (w).

Proof. [3], §11, 12. Teichmüller’s original proof is in [33]. ✷

Let the surface group + = +g be generated by hyperbolic elements

{a1, b1, . . . , ag, bg}, (17)

subject to the relation a1b1a−1
1 b−1

1 . . . agbga−1
g b−1

g = 1. r ∈ R(+) is (a1, b1)-
normalized if the repelling and attracting fixed points of r(a1) are 0, ∞, respectively,
and the repelling fixed point of r(b1) is 1. Let Q(a1, b1, +) ⊂ R(+) be the subspace
of (a1, b1)-normalized representations.
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Let /(+) be the subspace of quasiconformal maps w : Ū → Ū , topologized by
uniform convergence, which realize some r ∈ R(+) geometrically (i.e., such that
w+w−1 is Fuchsian) and which, in addition, fix 0, 1, ∞ ∈ ∂U . Let B(+) be the space
of +-compatible Beltrami coefficients µ(z) with 0 ≤ |µ(z)| < 1, topologized by
pointwise convergence at almost every z ∈ U .

Theorem 18. T (+) is homeomorphic to the open unit ball in R6g−6.

Proof. [3], §14; [27], §6. We sketch the proof, omitting the continuity arguments. The
starting point is the existence of a one-to-one correspondence between the space of
+-2-forms and the vector space V of quadratic differentials on the quotient surface
U/+, which has real dimension 6g − 6, by the Riemann-Roch theorem ([11], §III.4).
An inner product (, ) is defined on V by choosing a basis and taking it to be an ortho-
normal set. The continuous one-to-one map

θ : φ (→ µφ = (φ, φ)
φ̄

|φ| , φ ∈ V (18)

has image θ(V ) ⊆ B(+) by Lemma 13 and the fact that (φ, φ) < 1. By Lemmas 10
and 11, there is a (φ, φ)-quasiconformal solution to the Beltrami equation wz̄ =
µφ(z)wz whose continuous extension to ∂U fixes 0, 1, ∞. Let w[φ] be the solution; it
is a Teichmüller mapping, hence, unique. The map

σ : µφ (→ w[φ] (19)

from θ(V ) to /(+) is therefore one-to-one. By the converse of Lemma 15, there
exists rφ ∈ R(+) defined by rφ(γ ) = w−1

[φ]γw[φ], for all γ ∈ +g . w−1
[φ]0w[φ] = 0 and

w−1
[φ]∞w[φ] = ∞; similarly, w−1

[φ]1w[φ] = 1. These are, respectively, the attracting
and repelling fixed points of r(a1), and the repelling fixed point of r(b1). Thus rφ ∈
Q(a1, b1, +). rφ is unique since, by Lemma 10 (ii), another such solution would differ
by a real Möbius transformation fixing 0, 1, ∞, which must be the identity ([21],
Corollary 2.5.3). A continuity argument ([27], 6.17) shows that the one-to-one map

τ : w[φ] (→ rφ (20)

is also onto Q(a1, b1, +). This proves that Q(a1, b1, +) is homeomorphic to the open
unit ball in R6g−6. Finally, for every r ∈ R(+) there exists a unique c ∈ L such that
c−1r(+)c ∈ Q(a1, b1, +). Thus for every Teichmüller class [r] ∈ T (!) there is a
unique r0 ∈ Q(a1, b1, +) such that [r] = [r0]. It follows that T (+) is homeomorphic
to Q(a1, b1, +). ✷

Corollary 19. /(r, +) contains a (unique) Teichmüller mapping.

Proof. If r ∈ Q(a1, b1, +), this follows immediately from the proof of Theorem 18.
For the general r ∈ R(+), there exists c ∈ L which maps the attracting and repelling
fixed points of a1, and the repelling fixed point of b, onto 0, ∞, 1, respectively. Then
the map r ′ : + → L defined by λ (→ c ◦ r(λ) ◦ c−1 belongs to Q(a1, b1, +) and
hence there is a unique Teichmüller mapping t ∈ /(r ′, +). It is not difficult to verify
that c−1 ◦ t is a Teichmüller mapping in /(r, +), hence, the unique one. ✷

We now pass to the general co-compact Fuchsian group !.
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Theorem 20. /(r, !) is non-empty for all r ∈ R(!).

Proof. Let r ∈ R(!). By Theorem 6, ! contains a surface group + as a normal
subgroup of finite index. By Theorem 16, the restriction r |+ is realized by a unique
Teichm̈uller mapping t : U → U . Choose an arbitrary element γ ∈ ! and use it to
define a map

t ′ = r(γ )tγ −1, t ′ : U → U. (21)

By (13), t ′ has the same maximal dilatation as t . For λ ∈ +,

t ′λt ′−1 = r(γ )t(γ −1λγ )t−1r(γ −1)

= r(γ )r(γ −1λγ )r(γ −1)

= r(λ).

Thus t ′ realizes r |+ geometrically. Since it is also Teichmüller map for +, by unique-
ness, t ′ = t . Then (21) shows that tγ t−1 = r(γ ). Since γ ∈ ! was arbitrary,
t ∈ /(r, !). ✷

Theorem 21. If !1 is a subgroup of finite index in !, and t is a Teichmüller mapping
for !1, then t is also a Teichmüller mapping for !.

Proof. Using Theorem 6 it is easily shown that there is a surface group + which
is normal and of finite index in both !1 and !. Let r ∈ R(!), and let t be the
unique Teichmüller mapping in /(r |+, +). The proof of Theorem 20 shows that
t ∈ /(r |!1, !1) ∩ /(r, !). Thus t is both !1- and !-compatible. By Theorem 14, t is
a Teichmüller mapping for both !1 and !. ✷

Corollary 22. /(r, !) contains a (unique) Teichmüller mapping.

Let ! have signature (2).

Theorem 23. T (!) is homeomorphic to the open unit ball in R6g−6+2n .

Proof. [27], Theorem 7.13. Let + be a surface group contained with finite index in !
and generated by hyperbolic elements a1, b1, . . . ah, bh . Define Q(a1, b1, !) as the set
of (a1, b1)-normalized representations of !. If i : + → ! is the inclusion homomor-
phism, then r (→ r ◦ i , r ∈ Q(a1, b1, !), embeds Q(a1, b1, !) as a closed subspace
of Q(a1, b1, +), by Theorem 7. Let ψ = τσθ be the composition of the homeo-
morphisms (18), (19), (20). The image of the restriction of ψ−1 to Q(a1, b1, !) is
the open unit ball in a linear subspace, namely, the subspace of +-2-forms which are
also !-2-forms. This subspace is linearly equivalent to the vector space of quadratic
differentials on U/! having possible simple poles or removable singularities at the
n orbifold points; by the Riemann-Roch theorem, the real dimension of this space
is 6g − 6 + 2n. ✷

6. The Teichmüller metric

If r1, r2 ∈ R(!), then r2 ◦ r−1
1 ∈ R(r1(!)). Let t(r2 ◦ r−1

1 ) be the unique Teichmüller
mapping in /(r2 ◦ r−1

1 , !).
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Lemma 24. The function

d(r1, r2) = log |K (t(r2 ◦ r−1
1 ))| (22)

defines a pseudo-metric on R(!) which induces a true metric on T (!).

Proof. d(r1, r2) ≥ 0 since K (t(r2 ◦ r−1
1 )) ≥ 1. d(r1, r2) = d(r2, r1) by (13). The

triangle inequality follows from (12). d(r1, r2) = 0 if and only if t(r2 ◦ r−1
1 ) = c ∈

L, or, equivalently, for all γ ∈ !, r1(γ ) = c−1r2(γ )c. Thus r1(!) and r2(!) are
conjugate in L and [r1] = [r2] as points in T (!). ✷

The metric on T (!) is called the Teichmüller metric. It is not difficult to show that
this metric induces the same topology on T (!) as the quotient topology inherited from
R(!) ([27], Theorem 8.6).

Theorem 25. With respect to the Teichmüller metrics, the embedding ī : T (!∗) →
T (!) induced by the injective homomorphism i : ! → !∗ (cf. Theorem 7) is an
isometry.

Proof. Recall that the embedding is defined by ī : [r] (→ [r ◦ i]. If d, d∗ denote the
Teichmüller pseudo-metrics on R(!) and R(!∗), respectively, and r1, r2 ∈ R(!∗),
then

d(r1 ◦ i, r2 ◦ i) = log |K (t(r2 ◦ i ◦ i−1 ◦ r−1
1 ))| = d∗(r1, r2).

It follows that the Teichmüller distance between [r1] and [r2] is the same as the
Teichmüller distance between [r1 ◦ i] and [r2 ◦ i]. ✷

Corollary 26. Mod(!) acts as a group of isometries of T (!).

Proof. This is the special case of Theorem 25 in which !∗ = !, d∗ = d and i = α ∈
Aut+(!). ✷

There is a complex structure on T (!), compatible with the Teichmüller metric,
making T (!) biholomorphically equivalent to a bounded domain in C3g−3+n [2]. We
shall not need this structure, so we omit the details.

7. Fixed point sets

Let H be a subgroup of Mod(!) and let F(H) ⊂ T (!) be the set of points fixed by
H under the action

Mod(!) × T (!) → T (!). (23)

Theorem 27 (Nielsen-Kerckhoff). F(H) is non-empty if and only if H is a finite
group.

Proof. H is necessarily finite by Theorem 9 and Lemma 4. That every finite sub-
group of Mod(!) has a non-empty fixed point set was a long-standing conjecture,
known as the Nielsen realization problem. It was first proved for restricted classes
of groups such as cyclic and solvable, and finally in full generality by S. Kerckhoff
[23] using one-parameter families of deformations of hyperbolic structures known as
earthquakes. ✷



610 Anthony Weaver

Lemma 28. A finite subgroup H < Mod(!) exists if and only if there is a short exact
sequence

1 → !
i→ !∗ ρ→ H → 1, (24)

where !∗ ≤ NL(i(!)).

Proof. Let the sequence (24) be given. The natural homomorphism

j : NL(i(!)) → Aut+(i(!)) ≃ Aut+(!) (25)

is injective because i(!) has trivial centralizer in L; the restriction j |i(!) is an iso-
morphism between i(!) and Inn(i(!)), because i(!) has trivial center (Corollary 2).
Hence j induces an injective homomorphism

j∗ :
NL(i(!))

i(!)
→ Mod(!). (26)

Of course, the restriction of j∗ to !∗/ i(!) is also injective, and the image in Mod(!)
is isomorphic to H .

Conversely, suppose H is a finite subgroup of Mod(!). Let [α1], [α2], . . . , [αk] be
the elements of H . Assume [α1] = 1. By the Nielsen-Kerckhoff theorem there exists
[r] ∈ T (!) which is fixed by all of the [αi ], i.e., [r ◦ αi ] = [r], for 1 ≤ i ≤ k.
Equivalently, there exist ci ∈ L, 1 ≤ i ≤ k, such that, for all γ ∈ !, r(αi (γ )) =
c−1

i r(γ )ci . Each ci is unique because the centralizer of r(!) is trivial. In particular,
c1 = 1. Let !∗ ≤ NL(r(!)) be the Fuchsian group generated by the set r(!) ∪
{c1, . . . , ck}. Every element of !∗ can be written uniquely in the form c jr(γ ), γ ∈
!. The group operation is c jr(γ1) · clr(γ2) = c j clr(γ1)cl r(γ2), where r(γ1)cl =
c−1

l r(γ )cl . The map ρ : !∗ → H defined by by ci {r(γ )} (→ [αi ], i = 1, . . . , k, for
all γ ∈ !, is an epimorphism. Thus there is a short exact sequence of the form (24),
except that we have r(!) in place of !. There is no loss of generality, since we may
assume that r = id!. ✷

The next theorem characterizes the fixed point set of H < Mod(!) as the embedded
image of Teichmüller space.

Theorem 29. If H < Mod(!) belongs to the short exact sequence (24), then

F(H) = ī(T (!∗)), (27)

where ī : T (!∗) → T (!) is the embedding induced by i : ! → !∗.

Proof. [27], Theorem 9.11. Let [s] ∈ ī(T (!∗)) ⊂ T (!). Then there exists [σ ] ∈
T (!∗) such that s = σ ◦ i . For every [α] ∈ H , there is a unique c ∈ !∗ ≤ NL(!) < L
such that, for all γ ∈ !, s(α(γ )) = c−1s(γ )c. Thus [s ◦ α] = [s]. It follows that
s ∈ F(H). Conversely, suppose [s] ∈ F(H) ⊂ T (!). We may assume s = id! . Let
σ = id!∗ . Clearly, s = σ ◦ i and hence, [s] ∈ ī(T (!∗)). ✷

Remark 1. The embedding ī : T (!∗) ↪→ T (!) can be a surjection even if i(!) ̸= !∗.
For this to occur, the dimensions of T (!) and T (!∗) (computed using Theorem 23)
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must be equal. This implies that 1 < !∗/ i(!) ≃ H < Mod(!) fixes every point
in T (!), so that the action of Mod(!) on T (!) is not effective. The complete list of
subgroup pairs ! < !∗ for which the Teichmüller dimensions are equal, together with
the corresponding signatures, and the indices of the inclusions, is given in [32] (see
also [17]).

Let StabMod(!)(F(H)) denote the set-wise stabilizer of F(H) in Mod(!).

Theorem 30. StabMod(!)(F(H)) = NMod(!)(H)

Proof. [28], §4. If [α] belongs to the normalizer NMod(!)(H) of H , then [α]F(H) =
F(H), by a simple calculation. Thus

NMod(!)(H) ⊆ StabMod(!)(F(H)).

Conversely, let α ∈ Aut+(!), and suppose [α] ∈ StabMod(!)(F(H)). We may assume
H belongs to the short exact sequence (24). Since F(H) = ī(T (!∗)), for every [r] ∈
T (!∗), there exists r ′ ∈ T (!∗) such that

[r ◦ i ◦ α] = [r ′ ◦ i].

This implies the existence of β ∈ Aut+(!∗) such that

i ◦ α = β ◦ i.

There is a unique element c ∈ NL(!∗) such that

β(δ) = cδc−1,

for all δ ∈ !∗. In particular, α(i(γ )) = β(i(γ )) = ci(γ )c−1. It follows that c ∈
NL(i(!)) and j∗(c) = [α] ∈ Mod(!), where j∗ is the injective homomorphism (26).
Then

H = j∗(!∗/ i(!)) = j∗(c!∗c−1/ i(!)) = [α]H[α]−1,

which shows that [α] ∈ NMod(!)(H). ✷

8. Relative modular groups

The action of NMod(!)(H) on F(H) is properly discontinuous and isometric (being a
restriction of (23)). Since H < NMod(!)(H) acts trivially on F(H) by definition, the
effective action is by NMod(!)(H)/H , or, possibly, a quotient of this group.

Definition 4. NMod(!)(H)/H is called the relative modular group of !∗ with respect
to i(!).

There are other ways to define the relative modular group (see, e.g., [14,10]). One
useful alternative definition is as a subgroup of Mod(!∗).

Lemma 31. The subgroup

Mod(!∗, i(!)) = {[β] ∈ Mod(!∗)|β(i(!)) = i(!)} ≤ Mod(!∗)

is isomorphic to the relative modular group NMod(!)(H)/H.
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Proof. [28], Theorem 10. Let Aut+(!∗, i(!)) = {β ∈ Aut+(!∗)|β(i(!)) = i(!)}
≤ Aut+(!∗). Note that Inn(!∗, i(!)) = Inn(i(!)) since i(!) is normal in !∗. The
restriction homomorphism f : Aut+(!∗, i(!)) → Aut+(i(!)) defined by f : β (→
β|i(!) is injective: if β ′|i(!) = β|i(!), then, for all δ ∈ !∗, β ′(δ)−1β(δ) is in the
(trivial) centralizer of β(i(!)) and therefore β = β ′. Let [α] = [β|i(!)]. If [r] ∈
T (!∗), [r ◦ i] ∈ ī(T (!∗)) and

[α][r ◦ i] = [r ◦ i ◦ α] = [r ◦ β ◦ i] = ī([r ◦ β]) ∈ ī(T (!∗)).

Thus [α] stabilizes ī(T (!∗)), and hence, by Theorem 30, [α] ∈ NMod(!)(H). β ∈
Inn(!∗, i(!)) if and only if [α] ∈ H . Thus f induces an injective homomorphism
f̃ : Mod(!∗, i(!)) → NMod(!)(H)/H defined by [β] → [α]. On the other hand, if
[α] ∈ NMod(!)(H)/H , then [α] stabilizes F(H) and by the proof of Theorem 30 there
exists β ∈ Aut+(!∗) such that β|i(!) = α. Thus β ∈ Aut+(!∗, i(!)), f̃ ([β]) = [α],
and f̃ is surjective. ✷

If i(!) is characteristic in !∗, Mod(!∗, i(!)) = Mod(!∗); otherwise, the index
[Mod(!∗) : Mod(!∗, i(!))] is equal to the number of distinct images [β](i(!)), [β] ∈
M(!∗). This number is finite since each [β](i(!)) is the kernel of a homomorphism
from a finitely generated group (G∗) onto a finite group (H), of which there are just
finitely many. (See [14].)

Even the action of the relative modular group

Mod(!∗, i(!)) × ī(T (!∗)) → ī(T (!∗)), (28)

is not always effective. Let H1/H be the largest subgroup of NMod(!)(H)/H which
fixes every point in F(H). Then the effective action is by the group

NMod(!)(H)/H
H1/H

≃ NMod(!)(H)/H1. (29)

9. Topological versus conformal conjugacy

The orbit space
R(!∗, i(!)) = ī(T (!∗))/Mod(!∗, i(!))

of the action (28) is called the relative Riemann space of (!∗, i(!)) [10], [14].
If i(!) = !∗ it is called simply the Riemann space of !. The Riemann space of +g
(a surface group) is the space of moduli of compact Riemann surfaces of genus g,
denoted Rg. Of course, one obtains the same relative Riemann space if one replaces
Mod(!∗, i(!)) with the effective relative modular group (29).

Let H0 be a finite group. A surface with H0-symmetry, or, briefly, a surface-
symmetry pair, is a pair (X, H) in which X is a compact Riemann surface and
H ≃ H0 is a finite group of automorphisms of X . It is convenient to define two
equivalence relations on the set of surfaces with H0 symmetry.
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Definition 5. Surfaces with H0 symmetry (X1, H1) and (X2, H2) are conformally
equivalent (resp. topologically equivalent) if there exists a conformal map (resp.
orientation-preserving homeomorphism) t : X1 → X2 such that H1 = t H2t−1. The
Hi -actions are called conformally (resp. topologically) conjugate.

Theorem 32. If H belongs to the short exact sequence (24), there is a bijection
between R(!∗, i(!)) and the set of conformal equivalence classes of surfaces with
H-symmetry.

Proof. Let [r1], [r2] ∈ ī(T (!∗) ⊂ T (!). Then there exist [r ′
j ] ∈ T (!∗), j = 1, 2

such that [r ′
j ] = [r j ◦ i]. Put X j = U/r j (!), and

Hj = r ′
j (!

∗)/r j (!) ≃ H, j = 1, 2. (30)

The Hj action on X j is defined by

r ′
j (γ )r j (!) : r j (!)z (→ r ′

j (γ )r j (!)z, γ ∈ !∗, z ∈ U. (31)

If [r1], [r2] are in the same Mod(!∗, i(!))- orbit, there exists β ∈ Aut+(!∗, i(!))
such that [r ′

1◦β] = [r ′
2]. Moreover, β restricts to α ∈ Aut+(!) such that [r1◦α] = [r2].

Equivalently, there exists c ∈ L such that

r ′
1(β(γ )) = cr ′

2(γ )c−1, γ ∈ !∗. (32)

In particular, r1(!) = cr2(!)c−1. The map

r1(!)z (→ c−1r1(!)z, z ∈ U,

induces a conformal map c̃ : X1 → X2, since by (32), c−1r1(!)z = r2(!)c−1z.
For γ ∈ !∗, let hi(γ ) : Xi → Xi denote the map (31). To show that c̃ commutes

with the Hj -actions, we show that the diagram

X1
h1(γ )−→ X1

c̃ ↓ c̃ ↓
X2

h2(γ )−→ X2

(33)

commutes. For z ∈ U , let pz = r1(!)z ∈ X1. On the one hand,

c̃ ◦ h1(γ )(pz) = r2(!)c−1r ′
1(γ )z, (34)

and on the other,
h2(γ ) ◦ c̃(pz) = r2(!)r ′

2(γ )c−1z; (35)

the diagram commutes if and only if the right-hand sides of (34) and (35) represent
the same point in X2. Using (32), the right -hand side of (34) is equal to

r2(!)r ′
2(β

−1(γ ))c−1z.

Since r ′
2(β

−1(γ ))c−1 and r ′
2(γ )c−1 represent the same coset of r2(!), it follows that

the right-hand sides of (34) and (35) both represent the the same point in X2, namely,
r2(!)c−1z.
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We have shown that there is a one-to-one map from the relative Riemann space
R(!∗, !) to the set of conformal equivalence classes of surfaces with H symmetry.
The proof that this map is surjective is straightforward and we omit it. ✷

Suppose i j : ! → !∗, j = 1, 2, are two different injections of ! into !∗ such
that the image i j (!) is normal in !∗. Let [r1] ∈ ī1(T (!∗) and [r2] ∈ ī2(T (!∗).
There exist [r ′

j ] ∈ T (!∗), j = 1, 2 such that [r j ] = [r ′
j ◦ i j ], j = 1, 2. Put X j =

U/r j (!) and define Hj , and Hj -actions on X j , exactly as at (30), (31), respectively.
The isomorphism

r ′
2 ◦ r ′−1

1 : r ′
1(!

∗) → r ′
2(!

∗)

has a quasiconformal geometrical realization t : U → U by Theorem 20. We may
take t to be the unique Teichmüller map in /(r ′

2 ◦ r ′−1
1 , !1). t induces an orientation-

preserving homeomorphism t̃ : X1 → X2 which (in place of c̃) satisfies the
diagram (33). Thus the surface-symmetry pairs (X1, H1) and (X2, H2) are topologi-
cally conjugate.

One way to obtain distinct injections i j : ! → !∗, j = 1, 2 is to precompose i1
with β ∈ Aut+(!), obtaining i2 = i1 ◦ β. Then [r1] = [r2 ◦ β], i.e., [r1], [r2] are in
the same Mod(!)- orbit and the surfaces X1 and X2 are conformally equivalent. The
surface-symmetry pairs (X j , Hj ), j = 1, 2, however, need not be, since β need not
extend to an automorphism of G∗.

Under the action of Mod(!), the images of an embedded Teichmüller space
ī(T (!∗)) = F(H) ⊂ T (!) can intersect without coinciding (provided the embedded
space has positive Teichmüller dimension). In this case, we shall argue, the intersec-
tion is composed of embedded Teichmüller spaces of strictly smaller dimension.

Let [β] ∈ Mod(!), [r1], [r2] ∈ F(H) ∩ [β]F(H), [r1] ̸= [r2]. Suppose [r2] =
[β][r1], so that [r1] and [r2] project to the same point in X ∈ R(!). If [r1] and
[r2] are not in the same Mod(!∗, i(!))-orbit, i.e., if they determine distinct points
in the relative Riemann space R(!∗, i(!)), the surface-symmetry pairs (X, H1) and
(X, H2) are not conformally equivalent. Thus X ∈ R(!) is a surface admitting two
H-actions which are topologically but not conformally conjugate. Equivalently, the
full automorphism group G = Aut(X) contains two non-conjugate copies of H1. The
inclusion i : ! → !∗ extends to

!
i→ !∗ j→ !1, (36)

where j is a strict normal inclusion, j ◦ i : ! → !1 is also a normal inclusion, and
G ≃ !1/!. Then

F(G) = ī ◦ j̄(T (!1)) ⊆ F(H) ∩ [β]F(H).

If the dimension of F(G) is positive, and there are Mod(!)-images of F(G) which
intersect without coinciding, the procedure just described can be repeated begin-
ning with F(G) instead of F(H). After finitely many repetitions the procedure must
terminate: we reach a finite group G ′ > G such that all Mod(!)-images of F(G ′) are
either disjoint or identical. Then topological conjugacy implies conformal conjugacy
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and there is a bijection between the relative Riemann space and the image of F(G ′)
in R(!). This is always the case if the Teichmüller dimension of F(G ′) is 0.

For further discussion of these matters from an algebraic geometric view point,
see [16].

10. Stratification

Let Modg = Mod(+g). Let (H) denote the conjugacy class of a finite subgroup
H < Modg. There is a bijection between the set

{(H)|H < Modg, H non-trivial, finite}

and the set of topological equivalence classes of surface-symmetry pairs (X, H),
where X ∈ Rg is a surface of genus g (see, e.g. [31]).

For X ∈ Rg , let 4(X) denote the conjugacy class (Aut(X)) in Modg . We call
4(X) the symmetry type of X . The (H)-equisymmetric stratum of Rg is the set

R(H )
g = {X ∈ Rg |4(X) ≥ (H)} (37)

(the terminology is due to S. A. Broughton [6]). The stratification of Rg is the union
of the equisymmetry strata over all conjugacy classes of non-trivial finite subgroups
of Modg . The stratification is the image of the branch locus in T (+g) = Tg under
the action of Modg and is thus also the locus of surfaces with automorphisms. Each
stratum is the image of an embedded Teichmüller space in Tg. One can obtain the
stratification by considering all normal inclusions of the form i : +g → !∗ where
+g is fixed and !∗ varies over all co-compact Fuchsian groups containing +g as a
normal subgroup of finite index, and i varies over all normal inclusions i : +g → !∗.
From this it is clear that the number of strata is finite: there are finitely many !∗

such that the ratio χ(+g)/χ(!∗) is an integer, as required by the Riemann-Hurwtiz
relation (Lemma 3), and each such !∗, being finitely generated, admits finitely many
homomorphisms with kernel isomorphic to +g.

It can happen that R(G)
g = R(H )

g . This occurs when G ⊃ H and the dimen-
sions of the covering embedded Teichmüller spaces are equal (cf. Remark 1 following
Theorem 29). In this case, H is not the full automorphism group of any surface in
R(H )

g . Naturally, it is preferable to associate the largest possible group with a given
stratum.

It is possible to make the strata disjoint, and avoid the sort of duplication just
described (allowing some empty strata), by defining

R̃(H )
g = R(H )

g −
⋃

G⊃H

R(G)
g .

On the other hand, for some purposes, it is precisely the intersection of different strata
which are of most interest: the intersection and nesting relationships between the strata
echo those of the covering branch locus.

The strata (37) are known to be irreducible complex algebraic varieties ([4], §7).
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11. Examples

1. The equisymmetric stratification of R2 is simple enough to describe in words:
R2 itself has complex dimension 3. It contains a 2-dimensional stratum R(D2)

2 ,
where D2 is the Klein 4-group. This stratum contains two 1-dimensional substrata
associated with the dihedral group D4 of order 8 and the product C2 × S3 (cyclic by
symmetric). These two strata, in turn, intersect in two distinct 0-dimensional strata,
one corresponding to the group GL2(F3) of order 48 and the other to a certain
group of order 24. Finally, there is an isolated 0-dimensional stratum, not contained
in R(D2)

2 , associated with the cyclic group C10. (See [6,26], and also, [25].)
2. For all g > 2, Rg itself is properly regarded as the stratum associated with the

trivial group, but this is not the case in genus 2. In fact R2 = R(C2)
2 . The explana-

tion is that all surfaces of genus 2 admit the hyperelliptic involution. Equivalently:
there is a normal inclusion i : +2 → !∗, where !∗ is the group with signature
(0; 2, 2, 2, 2, 2, 2). It is easily verified that the dimension of the Teichmüller space
of !∗ is equal to the dimension of T2. Thus M2 acts ineffectively on T2 because
!∗/+2 ≃ C2 < Mod2 fixes every point.

3. The equisymmetric stratification of R3 can be constructed from the information in
[6]; see the author’s Ph.D. dissertation [34] for a (complicated) picture.

4. Let !(n) denote the Fuchsian group with signature (n; 2, . . . , 2), where the number
of 2’s is 2g + 2 − 4n. For g ≥ 2n − 1 and g > 1, there is a short exact sequence

1 → +g
i→ !(n) → C2 → 1. (38)

Let !(n)/+g = ⟨Jn|J 2
n = 1⟩ ≃ C2. Jn is known as an n-hyperelliptic involution

since it acts on the surface U/+g with quotient a surface of genus n. (J0 is the clas-
sical hyperelliptic involution.) A short argument shows that all surface-symmetry
pairs (U/+g, ⟨Jn⟩) are topologically conjugate. By a theorem of Farkas and Kra
[11], §V.1.9, if g > 4n + 1, Jn is unique (hence central) in Aut(U/+g). Restated
in terms of Fuchsian groups, this theorem says that whenever there is a sequence
of injective homomorphisms

+g
i→ !(n) j→ NL(+g), (39)

the image j (!(n)) is normal. (The image i(+g) is normal in !(n) because the index
is 2.) Hence any automorphism group !∗/+g of U/+g which contains !(n)/+g =
⟨Jn⟩, contains it as a normal subgroup, so Jn is a central element. As a consequence,
all pairs (U/+g, ⟨Jn⟩) are conformally conjugate.

In the intermediate range (g − 1)/4 ≤ n < (g + 1)/2, the theorem of Farkas
and Kra does not hold and there may be ⟨Jn⟩ actions that are topologically but
not conformally conjugate. We show this is the case when g = 3 and n = 1.
In genus 3 the Klein 4-group D2 = ⟨J0, J1⟩ acts with signature (0; 2, 2, 2, 2, 2, 2).
The hyperelliptic involution J0 is unique, so the other two nontrivial elements in
D2, namely J1 and J0 J1, acting with signature (1; 2, 2, 2, 2), are a pair of non-
conjugate 1-hyperelliptic involutions.
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5. (4., continued.) The theorem of Farkas and Kra has another consequence: if g >
4n + 1, and +g is contained in !(n), then NL(+g) ≤ NL(!(n)). A finite subgroup
H < Modg may be represented as !∗/+g , !∗ ≤ NL(+g). By assumption, G∗/+g
contains !(n)/+g = ⟨Jn⟩ as a normal subgroup. It follows that every finite sub-
group H < Modg stabilizes the fixed point set F(⟨Jn⟩) ⊂ Tg. In other words, the
embedded Teichmüller space

ī(T (!(n)) ⊂ Tg,

where i is the injective homomorphism in (38), is invariant under the action of
Modg . The n-hyperelliptic stratum R(⟨Jn⟩)

g is therefore disjoint from all other strata
except those contained in it. This is an advantage: to determine the substrata of
R(⟨Jn⟩)

g one need only consider the (finite) class of finite groups which are central
extensions of C2 by groups which act in genus n. See the author’s paper [35] for
the case n = 0.
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